{"title":"修复天空:地球环境工程师和应用地球科学家在地球化学二氧化碳去除中的作用","authors":"P. Renforth","doi":"10.1144/qjegh2023-053","DOIUrl":null,"url":null,"abstract":"The largest environmental remediation project in human history has begun, that of removing hundreds of billions of tonnes of carbon dioxide (CO 2 ) from the atmosphere over the coming century. This removal, together with deep and rapid emissions reduction, will be essential in preventing dangerous climate change. This briefing introduces the field of geochemical CO 2 removal (gCDR), which proposes to accelerate the natural reaction of atmospheric CO 2 with rocks or anthropogenic materials. It also explores the critical role geoenvironmental engineers and geoscientists will have in researching and deploying these technologies. While currently at an early stage of development, it is possible that gCDR will operate at a global scale (billion tonnes of CO 2 per year) by mid/late-century, resulting in an industry that generates $100s billions to $1 trillion in annual revenue, equivalent in scale to the present day oil industry. The core technical competencies of this industry will be derived from geoscience disciplines requiring the contribution of thousands and possibly tens of thousands of workers globally. To realise these opportunities, our community needs to lead in the development of gCDR, help to pioneer its deployment, create standards for monitoring, and verification, and incorporate gCDR into existing education programmes and professional development. Thematic collection: This article is part of the Climate change and resilience in Engineering Geology and Hydrogeology collection available at: https://www.lyellcollection.org/topic/collections/Climate-change-and-resilience-in-engineering-geology-and-hydrogeology","PeriodicalId":20937,"journal":{"name":"Quarterly Journal of Engineering Geology and Hydrogeology","volume":"3 6","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remediating the sky: the role of geoenvironmental engineers and applied geoscientists in geochemical carbon dioxide removal\",\"authors\":\"P. Renforth\",\"doi\":\"10.1144/qjegh2023-053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The largest environmental remediation project in human history has begun, that of removing hundreds of billions of tonnes of carbon dioxide (CO 2 ) from the atmosphere over the coming century. This removal, together with deep and rapid emissions reduction, will be essential in preventing dangerous climate change. This briefing introduces the field of geochemical CO 2 removal (gCDR), which proposes to accelerate the natural reaction of atmospheric CO 2 with rocks or anthropogenic materials. It also explores the critical role geoenvironmental engineers and geoscientists will have in researching and deploying these technologies. While currently at an early stage of development, it is possible that gCDR will operate at a global scale (billion tonnes of CO 2 per year) by mid/late-century, resulting in an industry that generates $100s billions to $1 trillion in annual revenue, equivalent in scale to the present day oil industry. The core technical competencies of this industry will be derived from geoscience disciplines requiring the contribution of thousands and possibly tens of thousands of workers globally. To realise these opportunities, our community needs to lead in the development of gCDR, help to pioneer its deployment, create standards for monitoring, and verification, and incorporate gCDR into existing education programmes and professional development. Thematic collection: This article is part of the Climate change and resilience in Engineering Geology and Hydrogeology collection available at: https://www.lyellcollection.org/topic/collections/Climate-change-and-resilience-in-engineering-geology-and-hydrogeology\",\"PeriodicalId\":20937,\"journal\":{\"name\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"volume\":\"3 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Engineering Geology and Hydrogeology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1144/qjegh2023-053\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Engineering Geology and Hydrogeology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1144/qjegh2023-053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Remediating the sky: the role of geoenvironmental engineers and applied geoscientists in geochemical carbon dioxide removal
The largest environmental remediation project in human history has begun, that of removing hundreds of billions of tonnes of carbon dioxide (CO 2 ) from the atmosphere over the coming century. This removal, together with deep and rapid emissions reduction, will be essential in preventing dangerous climate change. This briefing introduces the field of geochemical CO 2 removal (gCDR), which proposes to accelerate the natural reaction of atmospheric CO 2 with rocks or anthropogenic materials. It also explores the critical role geoenvironmental engineers and geoscientists will have in researching and deploying these technologies. While currently at an early stage of development, it is possible that gCDR will operate at a global scale (billion tonnes of CO 2 per year) by mid/late-century, resulting in an industry that generates $100s billions to $1 trillion in annual revenue, equivalent in scale to the present day oil industry. The core technical competencies of this industry will be derived from geoscience disciplines requiring the contribution of thousands and possibly tens of thousands of workers globally. To realise these opportunities, our community needs to lead in the development of gCDR, help to pioneer its deployment, create standards for monitoring, and verification, and incorporate gCDR into existing education programmes and professional development. Thematic collection: This article is part of the Climate change and resilience in Engineering Geology and Hydrogeology collection available at: https://www.lyellcollection.org/topic/collections/Climate-change-and-resilience-in-engineering-geology-and-hydrogeology
期刊介绍:
Quarterly Journal of Engineering Geology and Hydrogeology is owned by the Geological Society of London and published by the Geological Society Publishing House.
Quarterly Journal of Engineering Geology & Hydrogeology (QJEGH) is an established peer reviewed international journal featuring papers on geology as applied to civil engineering mining practice and water resources. Papers are invited from, and about, all areas of the world on engineering geology and hydrogeology topics. This includes but is not limited to: applied geophysics, engineering geomorphology, environmental geology, hydrogeology, groundwater quality, ground source heat, contaminated land, waste management, land use planning, geotechnics, rock mechanics, geomaterials and geological hazards.
The journal publishes the prestigious Glossop and Ineson lectures, research papers, case studies, review articles, technical notes, photographic features, thematic sets, discussion papers, editorial opinion and book reviews.