Putu Eka Tulistiawan, I Wayan Gede Astawa Karang, Takahiro Osawa
{"title":"巴厘和努沙登加拉岛卫星降雨产品(GPM-IMERG)的验证:正常季节、厄尔尼诺和拉尼娜事件的比较","authors":"Putu Eka Tulistiawan, I Wayan Gede Astawa Karang, Takahiro Osawa","doi":"10.24114/jg.v15i2.44967","DOIUrl":null,"url":null,"abstract":"Bali and Nusa Tenggara are regions where monsoonal wind changes and strange interactions between the ocean and atmosphere influence rainfall. The purpose of this research is to evaluate Integrated Multi-Satellite Retrievals for GPM (IMERG) rainfall data using in-situ observations from Bali and Nusa Tenggara, Indonesia, while considering seasonal variations and the El Nino-Southern Oscillation (ENSO) phenomenon. The study combines rainfall data from synoptic stations with rain gauge measurements over ten years, from January 2012 to December 2021, to obtain more accurate verification results. The study's findings indicate that, apart from the transitional seasons, IMERG data provides substantial estimates of monthly rainfall accumulation with low error values for both light and heavy rainfall. The study also reveals that the islands' complexity and topography can impact each province's validation values. The verification results show excellent accuracy in flat terrain areas and moderate elevations, while performance decreases in regions with high altitudes. These findings are significant because IMERG data can estimate rainfall for regions lacking monitoring stations during specific seasons and active ENSO conditions. Thus, this information can serve as a valuable tool to address the issue of data unavailability in hard-to-access areas and contribute to optimizing water resource management and weather-related disaster mitigation. Keywords: Validation, Rainfall, IMERG, ENSO","PeriodicalId":31787,"journal":{"name":"Jurnal Geografi","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of Satellite Rainfall Product (GPM-IMERG) an Bali and Nusa Tenggara: A Comparison of Normal Seasons, El Nino and La Nina Events\",\"authors\":\"Putu Eka Tulistiawan, I Wayan Gede Astawa Karang, Takahiro Osawa\",\"doi\":\"10.24114/jg.v15i2.44967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bali and Nusa Tenggara are regions where monsoonal wind changes and strange interactions between the ocean and atmosphere influence rainfall. The purpose of this research is to evaluate Integrated Multi-Satellite Retrievals for GPM (IMERG) rainfall data using in-situ observations from Bali and Nusa Tenggara, Indonesia, while considering seasonal variations and the El Nino-Southern Oscillation (ENSO) phenomenon. The study combines rainfall data from synoptic stations with rain gauge measurements over ten years, from January 2012 to December 2021, to obtain more accurate verification results. The study's findings indicate that, apart from the transitional seasons, IMERG data provides substantial estimates of monthly rainfall accumulation with low error values for both light and heavy rainfall. The study also reveals that the islands' complexity and topography can impact each province's validation values. The verification results show excellent accuracy in flat terrain areas and moderate elevations, while performance decreases in regions with high altitudes. These findings are significant because IMERG data can estimate rainfall for regions lacking monitoring stations during specific seasons and active ENSO conditions. Thus, this information can serve as a valuable tool to address the issue of data unavailability in hard-to-access areas and contribute to optimizing water resource management and weather-related disaster mitigation. Keywords: Validation, Rainfall, IMERG, ENSO\",\"PeriodicalId\":31787,\"journal\":{\"name\":\"Jurnal Geografi\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Geografi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/jg.v15i2.44967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Geografi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/jg.v15i2.44967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Validation of Satellite Rainfall Product (GPM-IMERG) an Bali and Nusa Tenggara: A Comparison of Normal Seasons, El Nino and La Nina Events
Bali and Nusa Tenggara are regions where monsoonal wind changes and strange interactions between the ocean and atmosphere influence rainfall. The purpose of this research is to evaluate Integrated Multi-Satellite Retrievals for GPM (IMERG) rainfall data using in-situ observations from Bali and Nusa Tenggara, Indonesia, while considering seasonal variations and the El Nino-Southern Oscillation (ENSO) phenomenon. The study combines rainfall data from synoptic stations with rain gauge measurements over ten years, from January 2012 to December 2021, to obtain more accurate verification results. The study's findings indicate that, apart from the transitional seasons, IMERG data provides substantial estimates of monthly rainfall accumulation with low error values for both light and heavy rainfall. The study also reveals that the islands' complexity and topography can impact each province's validation values. The verification results show excellent accuracy in flat terrain areas and moderate elevations, while performance decreases in regions with high altitudes. These findings are significant because IMERG data can estimate rainfall for regions lacking monitoring stations during specific seasons and active ENSO conditions. Thus, this information can serve as a valuable tool to address the issue of data unavailability in hard-to-access areas and contribute to optimizing water resource management and weather-related disaster mitigation. Keywords: Validation, Rainfall, IMERG, ENSO