用神经网络重建两幅离焦图像的出口波函数

IF 2.5 3区 工程技术 Q1 MICROSCOPY
Ziyi Meng , Wenquan Ming , Yutao He , Ruohan Shen , Jianghua Chen
{"title":"用神经网络重建两幅离焦图像的出口波函数","authors":"Ziyi Meng ,&nbsp;Wenquan Ming ,&nbsp;Yutao He ,&nbsp;Ruohan Shen ,&nbsp;Jianghua Chen","doi":"10.1016/j.micron.2023.103564","DOIUrl":null,"url":null,"abstract":"<div><p>Wave function reconstruction from one or two defocus images is promising for live atomic resolution imaging in transmission electron microscopy. However, a robust and accurate reconstruction method we still need more attention. Here, we present a neural-network-based wave function reconstruction method, EWR-NN, that enables accurate wave function reconstruction from only two defocus images. Results from both simulated and two different experimental defocus series show that the EWR-NN method has better performance than the widely-used iterative wave function reconstruction (IWFR) method. Influence of image number, defocus deviation, residual image shifts and noise level were considered to validate the performance of EWR-NN under practical conditions. It is seen that these factors will not influence the arrangement of atom columns in the reconstructed phase images, while they can alter the absolute values of all-atom columns and degrade the contrast of the phase images.</p></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exit wave function reconstruction from two defocus images using neural network\",\"authors\":\"Ziyi Meng ,&nbsp;Wenquan Ming ,&nbsp;Yutao He ,&nbsp;Ruohan Shen ,&nbsp;Jianghua Chen\",\"doi\":\"10.1016/j.micron.2023.103564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wave function reconstruction from one or two defocus images is promising for live atomic resolution imaging in transmission electron microscopy. However, a robust and accurate reconstruction method we still need more attention. Here, we present a neural-network-based wave function reconstruction method, EWR-NN, that enables accurate wave function reconstruction from only two defocus images. Results from both simulated and two different experimental defocus series show that the EWR-NN method has better performance than the widely-used iterative wave function reconstruction (IWFR) method. Influence of image number, defocus deviation, residual image shifts and noise level were considered to validate the performance of EWR-NN under practical conditions. It is seen that these factors will not influence the arrangement of atom columns in the reconstructed phase images, while they can alter the absolute values of all-atom columns and degrade the contrast of the phase images.</p></div>\",\"PeriodicalId\":18501,\"journal\":{\"name\":\"Micron\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micron\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968432823001622\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968432823001622","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

从一幅或两幅离焦图像中重建波函数是一种很有前途的动态原子分辨率成像技术。然而,一种鲁棒和精确的重建方法仍然需要我们更多的关注。在这里,我们提出了一种基于神经网络的波函数重建方法,EWR-NN,它可以从两个散焦图像中精确地重建波函数。仿真和两个不同实验离焦序列的结果表明,EWR-NN方法比广泛使用的迭代波函数重建(IWFR)方法具有更好的性能。考虑了图像数、离焦偏差、图像残差和噪声水平的影响,在实际条件下验证了EWR-NN的性能。结果表明,这些因素不会影响重构相像中原子柱的排列,但会改变全原子柱的绝对值,降低相像的对比度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exit wave function reconstruction from two defocus images using neural network

Wave function reconstruction from one or two defocus images is promising for live atomic resolution imaging in transmission electron microscopy. However, a robust and accurate reconstruction method we still need more attention. Here, we present a neural-network-based wave function reconstruction method, EWR-NN, that enables accurate wave function reconstruction from only two defocus images. Results from both simulated and two different experimental defocus series show that the EWR-NN method has better performance than the widely-used iterative wave function reconstruction (IWFR) method. Influence of image number, defocus deviation, residual image shifts and noise level were considered to validate the performance of EWR-NN under practical conditions. It is seen that these factors will not influence the arrangement of atom columns in the reconstructed phase images, while they can alter the absolute values of all-atom columns and degrade the contrast of the phase images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micron
Micron 工程技术-显微镜技术
CiteScore
4.30
自引率
4.20%
发文量
100
审稿时长
31 days
期刊介绍: Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信