具有调和多项式符号的Bergman-Toeplitz算子的谱图

IF 0.8 4区 数学 Q2 MATHEMATICS
Kunyu Guo, Xianfeng Zhao, Dechao Zheng
{"title":"具有调和多项式符号的Bergman-Toeplitz算子的谱图","authors":"Kunyu Guo, Xianfeng Zhao, Dechao Zheng","doi":"10.4310/arkiv.2023.v61.n2.a5","DOIUrl":null,"url":null,"abstract":"In this paper, it is shown that some new phenomenon related to the spectra of Toeplitz operators with bounded harmonic symbols on the Bergman space. On one hand, we prove that the spectrum of the Toeplitz operator with symbol ${\\bar{z}+p}$ is always connected for every polynomial $p$ with degree less than $3$. On the other hand, we show that for each integer $k$ greater than $2$, there exists a polynomial $p$ of degree $k$ such that the spectrum of the Toeplitz operator with symbol ${\\bar{z}+p}$ has at least one isolated point but has at most finitely many isolated points. Then these results are applied to obtain a class of non-hyponormal Toeplitz operators with bounded harmonic symbols on the Bergman space for which Weyl's theorem holds.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"158 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The spectral picture of Bergman–Toeplitz operators with harmonic polynomial symbols\",\"authors\":\"Kunyu Guo, Xianfeng Zhao, Dechao Zheng\",\"doi\":\"10.4310/arkiv.2023.v61.n2.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, it is shown that some new phenomenon related to the spectra of Toeplitz operators with bounded harmonic symbols on the Bergman space. On one hand, we prove that the spectrum of the Toeplitz operator with symbol ${\\\\bar{z}+p}$ is always connected for every polynomial $p$ with degree less than $3$. On the other hand, we show that for each integer $k$ greater than $2$, there exists a polynomial $p$ of degree $k$ such that the spectrum of the Toeplitz operator with symbol ${\\\\bar{z}+p}$ has at least one isolated point but has at most finitely many isolated points. Then these results are applied to obtain a class of non-hyponormal Toeplitz operators with bounded harmonic symbols on the Bergman space for which Weyl's theorem holds.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2023.v61.n2.a5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n2.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The spectral picture of Bergman–Toeplitz operators with harmonic polynomial symbols
In this paper, it is shown that some new phenomenon related to the spectra of Toeplitz operators with bounded harmonic symbols on the Bergman space. On one hand, we prove that the spectrum of the Toeplitz operator with symbol ${\bar{z}+p}$ is always connected for every polynomial $p$ with degree less than $3$. On the other hand, we show that for each integer $k$ greater than $2$, there exists a polynomial $p$ of degree $k$ such that the spectrum of the Toeplitz operator with symbol ${\bar{z}+p}$ has at least one isolated point but has at most finitely many isolated points. Then these results are applied to obtain a class of non-hyponormal Toeplitz operators with bounded harmonic symbols on the Bergman space for which Weyl's theorem holds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信