采用脉宽调制和模糊逻辑控制与防抱死制动相结合的紧急制动辅助系统的系统综述

IF 1 Q4 ENGINEERING, MECHANICAL
None SHITAL GUNJATE, None PROF.DR.SANJAY A KHOT
{"title":"采用脉宽调制和模糊逻辑控制与防抱死制动相结合的紧急制动辅助系统的系统综述","authors":"None SHITAL GUNJATE, None PROF.DR.SANJAY A KHOT","doi":"10.15282/ijame.20.2.2023.10.0808","DOIUrl":null,"url":null,"abstract":"The increasing number of fatalities in nations across the world because of a deficiency of protective technology in automobiles has created a chaotic scene in recent years. However, the car driver’s Perception-Reaction Time (PRT) plays an important variable during such accidents and emergencies. The Anti-Lock Braking System (ABS) seems a viable technology, which today is used to prevent tires from sliding during quick brakes, whereas EBS is designed for braking assistance during tuning or emergency braking. Physical weight, rotational rigidity, diameter, and tire material strength of the vehicle are all used to simulate them. Advance Driver Assistance Systems (ADAS), which include Anti-lock brakes (ABS) and Emergency Braking Systems (EBS), are the foremost viable technique for minimizing the environmental impact and uncertainties of driving road transportation. The presented systematic review aims to deliver a ground-level analysis that can be used to enhance the safety of motor vehicle driving, reduce wheel slip to achieve the best possible stopping distance in commercial and specialized vehicles, and influence future transportation. In this study, the most widely utilized technologies for ADAS have been reviewed and discussed. Various sensors used to improve braking and vehicle performance have been systematically studied in the context of low power-consuming techniques like pulse width modulation. An analysis of emergency braking procedures performed by riders with varying degrees of braking expertise was conducted using previously collected experimental data, and the results were used to conclude potential loss of control situations.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"71 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Systematic Review of Emergency Braking Assistant System to Avoid Accidents Using Pulse Width Modulation and Fuzzy Logic Control Integrated with Antilock Braking\",\"authors\":\"None SHITAL GUNJATE, None PROF.DR.SANJAY A KHOT\",\"doi\":\"10.15282/ijame.20.2.2023.10.0808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing number of fatalities in nations across the world because of a deficiency of protective technology in automobiles has created a chaotic scene in recent years. However, the car driver’s Perception-Reaction Time (PRT) plays an important variable during such accidents and emergencies. The Anti-Lock Braking System (ABS) seems a viable technology, which today is used to prevent tires from sliding during quick brakes, whereas EBS is designed for braking assistance during tuning or emergency braking. Physical weight, rotational rigidity, diameter, and tire material strength of the vehicle are all used to simulate them. Advance Driver Assistance Systems (ADAS), which include Anti-lock brakes (ABS) and Emergency Braking Systems (EBS), are the foremost viable technique for minimizing the environmental impact and uncertainties of driving road transportation. The presented systematic review aims to deliver a ground-level analysis that can be used to enhance the safety of motor vehicle driving, reduce wheel slip to achieve the best possible stopping distance in commercial and specialized vehicles, and influence future transportation. In this study, the most widely utilized technologies for ADAS have been reviewed and discussed. Various sensors used to improve braking and vehicle performance have been systematically studied in the context of low power-consuming techniques like pulse width modulation. An analysis of emergency braking procedures performed by riders with varying degrees of braking expertise was conducted using previously collected experimental data, and the results were used to conclude potential loss of control situations.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.20.2.2023.10.0808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.2.2023.10.0808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于汽车防护技术的不足,世界各国的死亡人数不断增加,造成了混乱的局面。然而,在此类事故和突发事件中,驾驶员的感知反应时间(PRT)是一个重要的变量。防抱死制动系统(ABS)似乎是一项可行的技术,目前用于防止轮胎在快速制动时滑动,而EBS则用于在调整或紧急制动时辅助制动。车辆的物理重量、旋转刚度、直径和轮胎材料强度都被用来模拟它们。包括防抱死制动系统(ABS)和紧急制动系统(EBS)在内的先进驾驶辅助系统(ADAS)是最大限度地减少道路交通对环境的影响和不确定性的最可行技术。本系统综述旨在提供地面分析,用于提高机动车驾驶的安全性,减少商用和专用车辆的车轮打滑,以实现最佳停车距离,并影响未来的交通。在本研究中,最广泛应用的ADAS技术进行了回顾和讨论。在脉冲宽度调制等低功耗技术的背景下,系统地研究了各种用于改善制动和车辆性能的传感器。利用先前收集的实验数据,对具有不同制动专业程度的骑手所执行的紧急制动程序进行了分析,并使用结果来总结潜在的失控情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Systematic Review of Emergency Braking Assistant System to Avoid Accidents Using Pulse Width Modulation and Fuzzy Logic Control Integrated with Antilock Braking
The increasing number of fatalities in nations across the world because of a deficiency of protective technology in automobiles has created a chaotic scene in recent years. However, the car driver’s Perception-Reaction Time (PRT) plays an important variable during such accidents and emergencies. The Anti-Lock Braking System (ABS) seems a viable technology, which today is used to prevent tires from sliding during quick brakes, whereas EBS is designed for braking assistance during tuning or emergency braking. Physical weight, rotational rigidity, diameter, and tire material strength of the vehicle are all used to simulate them. Advance Driver Assistance Systems (ADAS), which include Anti-lock brakes (ABS) and Emergency Braking Systems (EBS), are the foremost viable technique for minimizing the environmental impact and uncertainties of driving road transportation. The presented systematic review aims to deliver a ground-level analysis that can be used to enhance the safety of motor vehicle driving, reduce wheel slip to achieve the best possible stopping distance in commercial and specialized vehicles, and influence future transportation. In this study, the most widely utilized technologies for ADAS have been reviewed and discussed. Various sensors used to improve braking and vehicle performance have been systematically studied in the context of low power-consuming techniques like pulse width modulation. An analysis of emergency braking procedures performed by riders with varying degrees of braking expertise was conducted using previously collected experimental data, and the results were used to conclude potential loss of control situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信