{"title":"准平面图、弦图和厄尔多斯-加莱问题","authors":"Jacob Fox , János Pach , Andrew Suk","doi":"10.1016/j.ejc.2023.103811","DOIUrl":null,"url":null,"abstract":"<div><p>An <span><math><mi>r</mi></math></span>-<em>quasiplanar graph</em> is a graph drawn in the plane with no <span><math><mi>r</mi></math></span> pairwise crossing edges. Let <span><math><mrow><mi>s</mi><mo>≥</mo><mn>3</mn></mrow></math></span> be an integer and <span><math><mrow><mi>r</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msup></mrow></math></span>. We prove that there is a constant <span><math><mi>C</mi></math></span> such that every <span><math><mi>r</mi></math></span>-quasiplanar graph with <span><math><mrow><mi>n</mi><mo>≥</mo><mi>r</mi></mrow></math></span> vertices has at most <span><math><mrow><mi>n</mi><msup><mrow><mfenced><mrow><mi>C</mi><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>log</mo><mi>n</mi></mrow></mfenced></mrow><mrow><mn>2</mn><mi>s</mi><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> edges.</p><p>A graph whose vertices are continuous curves in the plane, two being connected by an edge if and only if they intersect, is called a <em>string graph</em>. We show that for every <span><math><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></math></span>, there exists <span><math><mrow><mi>δ</mi><mo>></mo><mn>0</mn></mrow></math></span> such that every string graph with <span><math><mi>n</mi></math></span> vertices whose chromatic number is at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msup></math></span> contains a clique of size at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>δ</mi></mrow></msup></math></span>. A clique of this size or a coloring using fewer than <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msup></math></span> colors can be found by a polynomial time algorithm in terms of the size of the geometric representation of the set of strings.</p><p>In the process, we use, generalize, and strengthen previous results of Lee, Tomon, and others. All of our theorems are related to geometric variants of the following classical graph-theoretic problem of Erdős, Gallai, and Rogers. Given a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>-free graph on <span><math><mi>n</mi></math></span> vertices and an integer <span><math><mrow><mi>s</mi><mo><</mo><mi>r</mi></mrow></math></span>, at least how many vertices can we find such that the subgraph induced by them is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>-free?</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"119 ","pages":"Article 103811"},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669823001282/pdfft?md5=d736f71ea441144851fb043750102221&pid=1-s2.0-S0195669823001282-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quasiplanar graphs, string graphs, and the Erdős–Gallai problem\",\"authors\":\"Jacob Fox , János Pach , Andrew Suk\",\"doi\":\"10.1016/j.ejc.2023.103811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An <span><math><mi>r</mi></math></span>-<em>quasiplanar graph</em> is a graph drawn in the plane with no <span><math><mi>r</mi></math></span> pairwise crossing edges. Let <span><math><mrow><mi>s</mi><mo>≥</mo><mn>3</mn></mrow></math></span> be an integer and <span><math><mrow><mi>r</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msup></mrow></math></span>. We prove that there is a constant <span><math><mi>C</mi></math></span> such that every <span><math><mi>r</mi></math></span>-quasiplanar graph with <span><math><mrow><mi>n</mi><mo>≥</mo><mi>r</mi></mrow></math></span> vertices has at most <span><math><mrow><mi>n</mi><msup><mrow><mfenced><mrow><mi>C</mi><msup><mrow><mi>s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>log</mo><mi>n</mi></mrow></mfenced></mrow><mrow><mn>2</mn><mi>s</mi><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> edges.</p><p>A graph whose vertices are continuous curves in the plane, two being connected by an edge if and only if they intersect, is called a <em>string graph</em>. We show that for every <span><math><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></math></span>, there exists <span><math><mrow><mi>δ</mi><mo>></mo><mn>0</mn></mrow></math></span> such that every string graph with <span><math><mi>n</mi></math></span> vertices whose chromatic number is at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msup></math></span> contains a clique of size at least <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>δ</mi></mrow></msup></math></span>. A clique of this size or a coloring using fewer than <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msup></math></span> colors can be found by a polynomial time algorithm in terms of the size of the geometric representation of the set of strings.</p><p>In the process, we use, generalize, and strengthen previous results of Lee, Tomon, and others. All of our theorems are related to geometric variants of the following classical graph-theoretic problem of Erdős, Gallai, and Rogers. Given a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>-free graph on <span><math><mi>n</mi></math></span> vertices and an integer <span><math><mrow><mi>s</mi><mo><</mo><mi>r</mi></mrow></math></span>, at least how many vertices can we find such that the subgraph induced by them is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>-free?</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"119 \",\"pages\":\"Article 103811\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669823001282/pdfft?md5=d736f71ea441144851fb043750102221&pid=1-s2.0-S0195669823001282-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669823001282\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669823001282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
r-quasiplanar graph(r 准平面图)是在平面上绘制的没有 r 条成对交叉边的图。设 s≥3 为整数,r=2s。我们证明存在一个常数 C,使得每个具有 n≥r 个顶点的 r-quasiplanar 图最多有 nCs-1logn2s-4 条边。顶点是平面上连续曲线的图,当且仅当两条曲线相交时,它们由一条边连接,这种图称为弦图。我们证明,对于每一个 ϵ>0,都存在 δ>0,使得每一个具有 n 个顶点且色度数至少为 nϵ 的弦图都包含一个大小至少为 nδ 的簇。在这个过程中,我们使用、概括并强化了李和托蒙等人之前的结果。我们的所有定理都与厄尔多斯、加莱和罗杰斯提出的以下经典图论问题的几何变体有关。给定 n 个顶点上的无 Kr 图和一个整数 s<r,我们至少能找到多少个顶点使得由它们诱导的子图是无 Ks 的?
Quasiplanar graphs, string graphs, and the Erdős–Gallai problem
An -quasiplanar graph is a graph drawn in the plane with no pairwise crossing edges. Let be an integer and . We prove that there is a constant such that every -quasiplanar graph with vertices has at most edges.
A graph whose vertices are continuous curves in the plane, two being connected by an edge if and only if they intersect, is called a string graph. We show that for every , there exists such that every string graph with vertices whose chromatic number is at least contains a clique of size at least . A clique of this size or a coloring using fewer than colors can be found by a polynomial time algorithm in terms of the size of the geometric representation of the set of strings.
In the process, we use, generalize, and strengthen previous results of Lee, Tomon, and others. All of our theorems are related to geometric variants of the following classical graph-theoretic problem of Erdős, Gallai, and Rogers. Given a -free graph on vertices and an integer , at least how many vertices can we find such that the subgraph induced by them is -free?
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.