激光熔覆NiCrSiFeB涂层的组织演变及耐蚀性能的提高

IF 0.7 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING
Chen Ming Chu, Jeyaprakash Natarajan, Che-Hua Yang, Mohan Ekambaram
{"title":"激光熔覆NiCrSiFeB涂层的组织演变及耐蚀性能的提高","authors":"Chen Ming Chu, Jeyaprakash Natarajan, Che-Hua Yang, Mohan Ekambaram","doi":"10.1515/ijmr-2022-0264","DOIUrl":null,"url":null,"abstract":"Abstract Inconel 625 (IN 625) is widespread in the manufacturing of critical components such as nuclear reactors, control rods, steam turbines, supercritical boilers, rotary shafts, aerospace engines, etc., that operate in severe harsh environments. However, if the service environments consist of sulphur (fuel tanks), chlorine (supercritical boilers and heavy water plants), H 2 S, HCl, etc., this alloy will suffer from localized corrosion attacks that minimize its resistance towards corrosion, followed by sudden failure. This study is aimed to facilitate the anti-corrosion characteristics of IN 625 by cladding it with Colmonoy 5 (NiCrSiFeB) alloy particles. The clad microstructure was revealed by micrographs captured by means of optical and field emission scanning electron microscopy followed by the nanoindentation study to analyze the hardness offered. Corrosion testing was carried out on both IN 625 and Colmonoy 5 clad samples at various intervals (0, 13, 27 and 56 h) for interrogating the corrosion behavior in terms of Tafel and impedance plots along with the surface roughness examination using scanning probe microscopy. The results showed that the clad region consists of dendritic microstructure along with the segregation of interdendritic Cr-rich precipitates after solidification. These interdendritic precipitates aid in improving the hardness at the clad region. Moreover, the clad samples have better anti-corrosion characteristics because of the existence of dendritic and interdendritic phases compared to the IN 625 samples in terms of current density, polarization resistance and average surface roughness values.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"25 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding\",\"authors\":\"Chen Ming Chu, Jeyaprakash Natarajan, Che-Hua Yang, Mohan Ekambaram\",\"doi\":\"10.1515/ijmr-2022-0264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Inconel 625 (IN 625) is widespread in the manufacturing of critical components such as nuclear reactors, control rods, steam turbines, supercritical boilers, rotary shafts, aerospace engines, etc., that operate in severe harsh environments. However, if the service environments consist of sulphur (fuel tanks), chlorine (supercritical boilers and heavy water plants), H 2 S, HCl, etc., this alloy will suffer from localized corrosion attacks that minimize its resistance towards corrosion, followed by sudden failure. This study is aimed to facilitate the anti-corrosion characteristics of IN 625 by cladding it with Colmonoy 5 (NiCrSiFeB) alloy particles. The clad microstructure was revealed by micrographs captured by means of optical and field emission scanning electron microscopy followed by the nanoindentation study to analyze the hardness offered. Corrosion testing was carried out on both IN 625 and Colmonoy 5 clad samples at various intervals (0, 13, 27 and 56 h) for interrogating the corrosion behavior in terms of Tafel and impedance plots along with the surface roughness examination using scanning probe microscopy. The results showed that the clad region consists of dendritic microstructure along with the segregation of interdendritic Cr-rich precipitates after solidification. These interdendritic precipitates aid in improving the hardness at the clad region. Moreover, the clad samples have better anti-corrosion characteristics because of the existence of dendritic and interdendritic phases compared to the IN 625 samples in terms of current density, polarization resistance and average surface roughness values.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ijmr-2022-0264\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ijmr-2022-0264","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

摘要Inconel 625广泛应用于核反应堆、控制棒、汽轮机、超临界锅炉、转轴、航空发动机等在恶劣环境下运行的关键部件的制造。然而,如果使用环境包括硫(燃料箱),氯(超临界锅炉和重水厂),h2s, HCl等,这种合金将遭受局部腐蚀,使其抗腐蚀能力降低,随后突然失效。本研究旨在通过在in625表面包覆镍基5 (NiCrSiFeB)合金颗粒来提高其防腐性能。利用光学显微镜和场发射扫描电子显微镜捕获的显微照片揭示了包层的微观结构,并进行了纳米压痕研究,分析了所提供的硬度。在不同的时间间隔(0、13、27和56小时)对IN 625和Colmonoy 5包覆的样品进行腐蚀测试,通过Tafel和阻抗图来询问腐蚀行为,并使用扫描探针显微镜进行表面粗糙度检查。结果表明:凝固后熔覆区由枝晶组织组成,枝晶间有富cr析出;这些枝晶间析出物有助于提高熔覆区的硬度。此外,由于枝晶相和枝晶间相的存在,包覆后的样品在电流密度、极化电阻和平均表面粗糙度值方面都比IN 625样品具有更好的抗腐蚀特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructural evolution and improved corrosion resistance of NiCrSiFeB coatings prepared by laser cladding
Abstract Inconel 625 (IN 625) is widespread in the manufacturing of critical components such as nuclear reactors, control rods, steam turbines, supercritical boilers, rotary shafts, aerospace engines, etc., that operate in severe harsh environments. However, if the service environments consist of sulphur (fuel tanks), chlorine (supercritical boilers and heavy water plants), H 2 S, HCl, etc., this alloy will suffer from localized corrosion attacks that minimize its resistance towards corrosion, followed by sudden failure. This study is aimed to facilitate the anti-corrosion characteristics of IN 625 by cladding it with Colmonoy 5 (NiCrSiFeB) alloy particles. The clad microstructure was revealed by micrographs captured by means of optical and field emission scanning electron microscopy followed by the nanoindentation study to analyze the hardness offered. Corrosion testing was carried out on both IN 625 and Colmonoy 5 clad samples at various intervals (0, 13, 27 and 56 h) for interrogating the corrosion behavior in terms of Tafel and impedance plots along with the surface roughness examination using scanning probe microscopy. The results showed that the clad region consists of dendritic microstructure along with the segregation of interdendritic Cr-rich precipitates after solidification. These interdendritic precipitates aid in improving the hardness at the clad region. Moreover, the clad samples have better anti-corrosion characteristics because of the existence of dendritic and interdendritic phases compared to the IN 625 samples in terms of current density, polarization resistance and average surface roughness values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
119
审稿时长
6.4 months
期刊介绍: The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信