微生物孢子与菌丝组成的生物气溶胶光学性质比较[特邀]

IF 3.3 2区 物理与天体物理 Q2 OPTICS
新宇 王, 以� 胡, 星 �, 有林 顾, 海浩 何, 婉莹 �, � 王
{"title":"微生物孢子与菌丝组成的生物气溶胶光学性质比较[特邀]","authors":"新宇 王, 以å�Ž 胡, 星 æ�¨, 有林 顾, 海浩 何, 婉莹 ä¸�, é¹� 王","doi":"10.3788/col202321.090006","DOIUrl":null,"url":null,"abstract":"Bioaerosols exhibit significant broadband extinction performance and have vital impacts on climate change, optical detection, communication, disease transmission, and the development of optical attenuation materials. Microbial spores and microbial hyphae represent two primary forms of bioaerosol particles. However, a comprehensive investigation and comparison of their optical properties have not been conducted yet. In this paper, the spectra of spores and hyphae were tested, and the absorption peaks, component contents, and protein structural differences were compared. Accurate structural models were established, and the optical attenuation parameters were calculated. Aerosol chamber experiments were conducted to verify the optical attenuation performance of microbial spores and hyphae in the mid-infrared and far-infrared spectral bands. Results demonstrate that selecting spores and hyphae can significantly reduce the average transmittance from 21.2% to 6.4% in the mid-infrared band and from 31.3% to 19.6% in the far-infrared band within three minutes. The conclusions have significant implications for the selection of high-performance microbial optical attenuation materials as well as for the rapid detection of bioaerosol types in research on climate change and the spread of pathogenic aerosols.","PeriodicalId":10293,"journal":{"name":"Chinese Optics Letters","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of optical properties of bioaerosols composed of microbial spores and hyphae [Invited]\",\"authors\":\"新宇 王, 以å�Ž 胡, 星 æ�¨, 有林 顾, 海浩 何, 婉莹 ä¸�, é¹� 王\",\"doi\":\"10.3788/col202321.090006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioaerosols exhibit significant broadband extinction performance and have vital impacts on climate change, optical detection, communication, disease transmission, and the development of optical attenuation materials. Microbial spores and microbial hyphae represent two primary forms of bioaerosol particles. However, a comprehensive investigation and comparison of their optical properties have not been conducted yet. In this paper, the spectra of spores and hyphae were tested, and the absorption peaks, component contents, and protein structural differences were compared. Accurate structural models were established, and the optical attenuation parameters were calculated. Aerosol chamber experiments were conducted to verify the optical attenuation performance of microbial spores and hyphae in the mid-infrared and far-infrared spectral bands. Results demonstrate that selecting spores and hyphae can significantly reduce the average transmittance from 21.2% to 6.4% in the mid-infrared band and from 31.3% to 19.6% in the far-infrared band within three minutes. The conclusions have significant implications for the selection of high-performance microbial optical attenuation materials as well as for the rapid detection of bioaerosol types in research on climate change and the spread of pathogenic aerosols.\",\"PeriodicalId\":10293,\"journal\":{\"name\":\"Chinese Optics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Optics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/col202321.090006\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Optics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/col202321.090006","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of optical properties of bioaerosols composed of microbial spores and hyphae [Invited]
Bioaerosols exhibit significant broadband extinction performance and have vital impacts on climate change, optical detection, communication, disease transmission, and the development of optical attenuation materials. Microbial spores and microbial hyphae represent two primary forms of bioaerosol particles. However, a comprehensive investigation and comparison of their optical properties have not been conducted yet. In this paper, the spectra of spores and hyphae were tested, and the absorption peaks, component contents, and protein structural differences were compared. Accurate structural models were established, and the optical attenuation parameters were calculated. Aerosol chamber experiments were conducted to verify the optical attenuation performance of microbial spores and hyphae in the mid-infrared and far-infrared spectral bands. Results demonstrate that selecting spores and hyphae can significantly reduce the average transmittance from 21.2% to 6.4% in the mid-infrared band and from 31.3% to 19.6% in the far-infrared band within three minutes. The conclusions have significant implications for the selection of high-performance microbial optical attenuation materials as well as for the rapid detection of bioaerosol types in research on climate change and the spread of pathogenic aerosols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Optics Letters
Chinese Optics Letters 物理-光学
CiteScore
5.60
自引率
20.00%
发文量
180
审稿时长
2.3 months
期刊介绍: Chinese Optics Letters (COL) is an international journal aimed at the rapid dissemination of latest, important discoveries and inventions in all branches of optical science and technology. It is considered to be one of the most important journals in optics in China. It is collected by The Optical Society (OSA) Publishing Digital Library and also indexed by Science Citation Index (SCI), Engineering Index (EI), etc. COL is distinguished by its short review period (~30 days) and publication period (~100 days). With its debut in January 2003, COL is published monthly by Chinese Laser Press, and distributed by OSA outside of Chinese Mainland.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信