高分子纳米粒子上离子液体组装的物理化学驱动因素研究

IF 2.9 Q2 ELECTROCHEMISTRY
Sara X. Edgecomb, Christine M. Hamadani, Angela Roberts, George Taylor, Anya Merrell, Ember Suh, Mahesh Loku Yaddehige, Indika Chandrasiri, Davita L. Watkins, Eden E. L. Tanner
{"title":"高分子纳米粒子上离子液体组装的物理化学驱动因素研究","authors":"Sara X. Edgecomb, Christine M. Hamadani, Angela Roberts, George Taylor, Anya Merrell, Ember Suh, Mahesh Loku Yaddehige, Indika Chandrasiri, Davita L. Watkins, Eden E. L. Tanner","doi":"10.1002/elsa.202300013","DOIUrl":null,"url":null,"abstract":"Abstract Ionic liquids (ILs) have emerged as promising biomaterials for enhancing drug delivery by functionalizing polymeric nanoparticles (NPs). Despite the biocompatibility and biofunctionalization they confer upon the NPs, little is understood regarding the degree in which non‐covalent interactions, particularly hydrogen bonding and electrostatic interactions, govern IL‐NP supramolecular assembly. Herein, we use salt (0‐1 M sodium sulfate) and acid (0.25 M hydrochloric acid at pH 4.8) titrations to disrupt IL‐functionalized nanoassembly for four different polymeric platforms during synthesis. Through quantitative 1 H‐nuclear magnetic resonance spectroscopy and dynamic light scattering, we demonstrate that the driving force of choline trans‐2‐hexenoate (CA2HA 1:1) IL assembly varies with either hydrogen bonding or electrostatics dominating, depending on the structure of the polymeric platform. In particular, the covalently bound or branched 50:50 block co‐polymer systems (diblock PEG‐PLGA [DPP] and polycaprolactone [PCl]‐poly[amidoamine] amine‐based linear‐dendritic block co‐polymer) are predominantly affected by hydrogen bonding disruption. In contrast, a purely linear block co‐polymer system (carboxylic acid terminated poly[lactic‐co‐glycolic acid]) necessitates both electrostatics and hydrogen bonding to assemble with IL and a two‐component electrostatically bound system (electrostatic PEG‐PLGA [EPP]) favors hydrogen‐bonding with electrostatics serving as a secondary role.","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of physicochemical drivers directing ionic liquid assembly on polymeric nanoparticles\",\"authors\":\"Sara X. Edgecomb, Christine M. Hamadani, Angela Roberts, George Taylor, Anya Merrell, Ember Suh, Mahesh Loku Yaddehige, Indika Chandrasiri, Davita L. Watkins, Eden E. L. Tanner\",\"doi\":\"10.1002/elsa.202300013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ionic liquids (ILs) have emerged as promising biomaterials for enhancing drug delivery by functionalizing polymeric nanoparticles (NPs). Despite the biocompatibility and biofunctionalization they confer upon the NPs, little is understood regarding the degree in which non‐covalent interactions, particularly hydrogen bonding and electrostatic interactions, govern IL‐NP supramolecular assembly. Herein, we use salt (0‐1 M sodium sulfate) and acid (0.25 M hydrochloric acid at pH 4.8) titrations to disrupt IL‐functionalized nanoassembly for four different polymeric platforms during synthesis. Through quantitative 1 H‐nuclear magnetic resonance spectroscopy and dynamic light scattering, we demonstrate that the driving force of choline trans‐2‐hexenoate (CA2HA 1:1) IL assembly varies with either hydrogen bonding or electrostatics dominating, depending on the structure of the polymeric platform. In particular, the covalently bound or branched 50:50 block co‐polymer systems (diblock PEG‐PLGA [DPP] and polycaprolactone [PCl]‐poly[amidoamine] amine‐based linear‐dendritic block co‐polymer) are predominantly affected by hydrogen bonding disruption. In contrast, a purely linear block co‐polymer system (carboxylic acid terminated poly[lactic‐co‐glycolic acid]) necessitates both electrostatics and hydrogen bonding to assemble with IL and a two‐component electrostatically bound system (electrostatic PEG‐PLGA [EPP]) favors hydrogen‐bonding with electrostatics serving as a secondary role.\",\"PeriodicalId\":93746,\"journal\":{\"name\":\"Electrochemical science advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/elsa.202300013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/elsa.202300013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

离子液体(ILs)是一种很有前途的生物材料,可以通过功能化聚合物纳米颗粒(NPs)来增强药物的传递。尽管它们赋予NPs生物相容性和生物功能,但对于非共价相互作用,特别是氢键和静电相互作用,在多大程度上控制IL - NP超分子组装,人们知之甚少。本文中,我们在合成过程中使用盐(0.1 M硫酸钠)和酸(0.25 M盐酸,pH值为4.8)滴定来破坏四种不同聚合物平台的IL功能化纳米组装。通过定量核磁共振波谱和动态光散射,我们证明了胆碱反式- 2 -己烯酸酯(CA2HA 1:1) IL组装的驱动力随氢键或静电主导而变化,这取决于聚合物平台的结构。特别是,共价结合或支链的50:50嵌段共聚物体系(二嵌段PEG - PLGA [DPP]和聚己内酯[PCl] -聚[氨基胺]胺基线性树枝状嵌段共聚物)主要受到氢键破坏的影响。相比之下,纯线性嵌段共聚物体系(羧酸端接的聚[乳酸- co -乙醇酸])需要静电和氢键才能与IL组装,而双组分静电结合体系(静电PEG - PLGA [EPP])有利于氢键,静电作为次要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of physicochemical drivers directing ionic liquid assembly on polymeric nanoparticles
Abstract Ionic liquids (ILs) have emerged as promising biomaterials for enhancing drug delivery by functionalizing polymeric nanoparticles (NPs). Despite the biocompatibility and biofunctionalization they confer upon the NPs, little is understood regarding the degree in which non‐covalent interactions, particularly hydrogen bonding and electrostatic interactions, govern IL‐NP supramolecular assembly. Herein, we use salt (0‐1 M sodium sulfate) and acid (0.25 M hydrochloric acid at pH 4.8) titrations to disrupt IL‐functionalized nanoassembly for four different polymeric platforms during synthesis. Through quantitative 1 H‐nuclear magnetic resonance spectroscopy and dynamic light scattering, we demonstrate that the driving force of choline trans‐2‐hexenoate (CA2HA 1:1) IL assembly varies with either hydrogen bonding or electrostatics dominating, depending on the structure of the polymeric platform. In particular, the covalently bound or branched 50:50 block co‐polymer systems (diblock PEG‐PLGA [DPP] and polycaprolactone [PCl]‐poly[amidoamine] amine‐based linear‐dendritic block co‐polymer) are predominantly affected by hydrogen bonding disruption. In contrast, a purely linear block co‐polymer system (carboxylic acid terminated poly[lactic‐co‐glycolic acid]) necessitates both electrostatics and hydrogen bonding to assemble with IL and a two‐component electrostatically bound system (electrostatic PEG‐PLGA [EPP]) favors hydrogen‐bonding with electrostatics serving as a secondary role.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信