{"title":"纳米流体在达西多孔介质中移动板上流动的双解","authors":"Hiranmoy Maiti, Samir Kumar Nandy, Swati Mukhopadhyay","doi":"10.1142/s0217979224503697","DOIUrl":null,"url":null,"abstract":"The aim of this study is to present forced convective nanofluid flow over a moving plate embedded in an absorbent medium. Following Darcy law’s for porous medium, the flow analysis is explored in attendance of warmth basis/drop. The main objective of this study is to explore the effects of Brownian motion and thermophoresis. The plate is considered to move in both directions: in the way of movement of fluid and in the opposite route of fluid movement. Similarity alterations have been applied to alter the leading partial differential equations (PDEs) to ordinary differential equations (ODEs). Numerical solutions have been obtained with the help of MATHEMATICA software. Dual solutions have been obtained when the plate and liquid go in reverse ways. Wall shear stress, Nusselt and Sherwood numbers all are found to rise with the rising permeability parameter of absorbent medium. For Nusselt and Sherwood numbers, ranges of dual solutions diminish by the mounting values of permeability parameter K. The critical values for porosity parameter [Formula: see text], 0.02, 0.03 are [Formula: see text], [Formula: see text], [Formula: see text], respectively. For decreasing values of s, range of dual solutions decreases. For [Formula: see text], dual solutions exist in the range [Formula: see text].","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"19 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual solutions for nanofluid flow past a moving plate embedded in a Darcy porous medium in attendance of heat source/sink\",\"authors\":\"Hiranmoy Maiti, Samir Kumar Nandy, Swati Mukhopadhyay\",\"doi\":\"10.1142/s0217979224503697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to present forced convective nanofluid flow over a moving plate embedded in an absorbent medium. Following Darcy law’s for porous medium, the flow analysis is explored in attendance of warmth basis/drop. The main objective of this study is to explore the effects of Brownian motion and thermophoresis. The plate is considered to move in both directions: in the way of movement of fluid and in the opposite route of fluid movement. Similarity alterations have been applied to alter the leading partial differential equations (PDEs) to ordinary differential equations (ODEs). Numerical solutions have been obtained with the help of MATHEMATICA software. Dual solutions have been obtained when the plate and liquid go in reverse ways. Wall shear stress, Nusselt and Sherwood numbers all are found to rise with the rising permeability parameter of absorbent medium. For Nusselt and Sherwood numbers, ranges of dual solutions diminish by the mounting values of permeability parameter K. The critical values for porosity parameter [Formula: see text], 0.02, 0.03 are [Formula: see text], [Formula: see text], [Formula: see text], respectively. For decreasing values of s, range of dual solutions decreases. For [Formula: see text], dual solutions exist in the range [Formula: see text].\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979224503697\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217979224503697","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Dual solutions for nanofluid flow past a moving plate embedded in a Darcy porous medium in attendance of heat source/sink
The aim of this study is to present forced convective nanofluid flow over a moving plate embedded in an absorbent medium. Following Darcy law’s for porous medium, the flow analysis is explored in attendance of warmth basis/drop. The main objective of this study is to explore the effects of Brownian motion and thermophoresis. The plate is considered to move in both directions: in the way of movement of fluid and in the opposite route of fluid movement. Similarity alterations have been applied to alter the leading partial differential equations (PDEs) to ordinary differential equations (ODEs). Numerical solutions have been obtained with the help of MATHEMATICA software. Dual solutions have been obtained when the plate and liquid go in reverse ways. Wall shear stress, Nusselt and Sherwood numbers all are found to rise with the rising permeability parameter of absorbent medium. For Nusselt and Sherwood numbers, ranges of dual solutions diminish by the mounting values of permeability parameter K. The critical values for porosity parameter [Formula: see text], 0.02, 0.03 are [Formula: see text], [Formula: see text], [Formula: see text], respectively. For decreasing values of s, range of dual solutions decreases. For [Formula: see text], dual solutions exist in the range [Formula: see text].
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.