{"title":"辐照和温度对改性SEPIC转化器性能的影响","authors":"Abdel-Karim Daud, Sameer Khader","doi":"10.37394/232016.2023.18.16","DOIUrl":null,"url":null,"abstract":"The changing position and nature of the sun due to changes in ambient temperature and irradiance level throughout the day is the main difficulty with photovoltaic (PV) systems. This leads to fluctuations in power levels. Therefore, maximum power point tracking (MPPT) under these conditions is the main challenge. This paper proposes a new approach for directly operating at the maximum power point (MPP) at any value of solar irradiation and cell temperature without applying further mathematical processing to operate at that point. This technique is applied to a PV system containing a high-static-gain modified single-ended primary coil MSEPIC converter, which is characterized by high efficiency and high gain voltage. The performance of this converter is obtained with respect to load and output voltage variation under different climatic conditions in Hebron, Palestine. Solar panel type LG450N2W-E6 is selected as the PV generator in this system with 450 W at 41.1 V at MPP. The proposed model is analyzed and simulated in Matlab/Simulink, and m-file code.","PeriodicalId":38993,"journal":{"name":"WSEAS Transactions on Power Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irradiation and Temperature effects on Modified SEPIC Converter Performance for PV Systems\",\"authors\":\"Abdel-Karim Daud, Sameer Khader\",\"doi\":\"10.37394/232016.2023.18.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The changing position and nature of the sun due to changes in ambient temperature and irradiance level throughout the day is the main difficulty with photovoltaic (PV) systems. This leads to fluctuations in power levels. Therefore, maximum power point tracking (MPPT) under these conditions is the main challenge. This paper proposes a new approach for directly operating at the maximum power point (MPP) at any value of solar irradiation and cell temperature without applying further mathematical processing to operate at that point. This technique is applied to a PV system containing a high-static-gain modified single-ended primary coil MSEPIC converter, which is characterized by high efficiency and high gain voltage. The performance of this converter is obtained with respect to load and output voltage variation under different climatic conditions in Hebron, Palestine. Solar panel type LG450N2W-E6 is selected as the PV generator in this system with 450 W at 41.1 V at MPP. The proposed model is analyzed and simulated in Matlab/Simulink, and m-file code.\",\"PeriodicalId\":38993,\"journal\":{\"name\":\"WSEAS Transactions on Power Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232016.2023.18.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232016.2023.18.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Irradiation and Temperature effects on Modified SEPIC Converter Performance for PV Systems
The changing position and nature of the sun due to changes in ambient temperature and irradiance level throughout the day is the main difficulty with photovoltaic (PV) systems. This leads to fluctuations in power levels. Therefore, maximum power point tracking (MPPT) under these conditions is the main challenge. This paper proposes a new approach for directly operating at the maximum power point (MPP) at any value of solar irradiation and cell temperature without applying further mathematical processing to operate at that point. This technique is applied to a PV system containing a high-static-gain modified single-ended primary coil MSEPIC converter, which is characterized by high efficiency and high gain voltage. The performance of this converter is obtained with respect to load and output voltage variation under different climatic conditions in Hebron, Palestine. Solar panel type LG450N2W-E6 is selected as the PV generator in this system with 450 W at 41.1 V at MPP. The proposed model is analyzed and simulated in Matlab/Simulink, and m-file code.
期刊介绍:
WSEAS Transactions on Power Systems publishes original research papers relating to electric power and energy. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with generation, transmission & distribution planning, alternative energy systems, power market, switching and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.