Regina Bispo, Francisca G. Vieira, Clara Yokochi, Filipe J. Marques, Pedro Espadinha-Cruz, Alexandre Penha, António Grilo
{"title":"利用空间点过程模型、聚类和空间划分对消防站布局进行重新配置","authors":"Regina Bispo, Francisca G. Vieira, Clara Yokochi, Filipe J. Marques, Pedro Espadinha-Cruz, Alexandre Penha, António Grilo","doi":"10.1007/s41060-023-00455-z","DOIUrl":null,"url":null,"abstract":"Abstract Fire stations (FS) are typically non-uniformly distributed across space, and their service area is, in general, defined based on administrative boundaries. Since the location of FS may considerably influence the readiness and the effectiveness of the provided services, national and regional governments need research-based information to adequately plan where to establish firefighting facilities. In this study, we propose a method to reconfigure the fire stations layout using spatial point process models, clustering and space partitioning. First, modelling fire intensity variation across space through a point process model enables to replicate the process independently by simulation. Subsequently, for each simulation, the k -means algorithm is used to define a siting location, minimizing the total within distance between the fire occurrences and the new position. This method allows to obtain a set of locations from which the respective distribution is inferred. Assuming a bivariate normal spatial distribution, we further define confidence siting regions. Ultimately, new FS service areas are defined by Voronoi tessellation. To exemplify the application of the method, we apply it to reconfigure the fire station layout at Aveiro, Portugal.","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using spatial point process models, clustering and space partitioning to reconfigure fire stations layout\",\"authors\":\"Regina Bispo, Francisca G. Vieira, Clara Yokochi, Filipe J. Marques, Pedro Espadinha-Cruz, Alexandre Penha, António Grilo\",\"doi\":\"10.1007/s41060-023-00455-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fire stations (FS) are typically non-uniformly distributed across space, and their service area is, in general, defined based on administrative boundaries. Since the location of FS may considerably influence the readiness and the effectiveness of the provided services, national and regional governments need research-based information to adequately plan where to establish firefighting facilities. In this study, we propose a method to reconfigure the fire stations layout using spatial point process models, clustering and space partitioning. First, modelling fire intensity variation across space through a point process model enables to replicate the process independently by simulation. Subsequently, for each simulation, the k -means algorithm is used to define a siting location, minimizing the total within distance between the fire occurrences and the new position. This method allows to obtain a set of locations from which the respective distribution is inferred. Assuming a bivariate normal spatial distribution, we further define confidence siting regions. Ultimately, new FS service areas are defined by Voronoi tessellation. To exemplify the application of the method, we apply it to reconfigure the fire station layout at Aveiro, Portugal.\",\"PeriodicalId\":45667,\"journal\":{\"name\":\"International Journal of Data Science and Analytics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Science and Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41060-023-00455-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Science and Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41060-023-00455-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Using spatial point process models, clustering and space partitioning to reconfigure fire stations layout
Abstract Fire stations (FS) are typically non-uniformly distributed across space, and their service area is, in general, defined based on administrative boundaries. Since the location of FS may considerably influence the readiness and the effectiveness of the provided services, national and regional governments need research-based information to adequately plan where to establish firefighting facilities. In this study, we propose a method to reconfigure the fire stations layout using spatial point process models, clustering and space partitioning. First, modelling fire intensity variation across space through a point process model enables to replicate the process independently by simulation. Subsequently, for each simulation, the k -means algorithm is used to define a siting location, minimizing the total within distance between the fire occurrences and the new position. This method allows to obtain a set of locations from which the respective distribution is inferred. Assuming a bivariate normal spatial distribution, we further define confidence siting regions. Ultimately, new FS service areas are defined by Voronoi tessellation. To exemplify the application of the method, we apply it to reconfigure the fire station layout at Aveiro, Portugal.
期刊介绍:
Data Science has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. The field encompasses the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations. The journal is composed of three streams: Regular, to communicate original and reproducible theoretical and experimental findings on data science and analytics; Applications, to report the significant data science applications to real-life situations; and Trends, to report expert opinion and comprehensive surveys and reviews of relevant areas and topics in data science and analytics.Topics of relevance include all aspects of the trends, scientific foundations, techniques, and applications of data science and analytics, with a primary focus on:statistical and mathematical foundations for data science and analytics;understanding and analytics of complex data, human, domain, network, organizational, social, behavior, and system characteristics, complexities and intelligences;creation and extraction, processing, representation and modelling, learning and discovery, fusion and integration, presentation and visualization of complex data, behavior, knowledge and intelligence;data analytics, pattern recognition, knowledge discovery, machine learning, deep analytics and deep learning, and intelligent processing of various data (including transaction, text, image, video, graph and network), behaviors and systems;active, real-time, personalized, actionable and automated analytics, learning, computation, optimization, presentation and recommendation; big data architecture, infrastructure, computing, matching, indexing, query processing, mapping, search, retrieval, interoperability, exchange, and recommendation;in-memory, distributed, parallel, scalable and high-performance computing, analytics and optimization for big data;review, surveys, trends, prospects and opportunities of data science research, innovation and applications;data science applications, intelligent devices and services in scientific, business, governmental, cultural, behavioral, social and economic, health and medical, human, natural and artificial (including online/Web, cloud, IoT, mobile and social media) domains; andethics, quality, privacy, safety and security, trust, and risk of data science and analytics