{"title":"基于关联分类的网约车司机攻击性驾驶行为识别","authors":"Ying Wu, Shuyan Chen, Yongfeng Ma, Wen Cheng, Fangwei Zhang, Guanyang Xing","doi":"10.1002/hfm.21015","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development of online car-hailing, the related crashes have become a key issue with public concern. Identifying and predicting aggressive driving behaviors is critical to reduce traffic crashes. In this study, we propose a method to recognize aggressive driving behavior based on association classification, with multisource features being employed, including driver emotion, vehicle kinematic characteristics, and road environment. The model performs best in a 10-fold cross-test when the minimum support and minimum confidence are set as 0.01 and 0.8, respectively. Besides, we also compare the performance of aggressive driving behavior recognition classifiers constructed using association classification with other rule-based classification methods, including ID3, C4.5, CART, and Random Forest. The results show that association classification performs better than other classification competitors. Thirty-six if–then rules generated by the association classification are used to analyze the influencing factors and associated mechanisms of aggressive driving behavior. It is found that aggressive driving behavior is highly correlated with driver anger and disgust emotions. Aggressive driving behavior is more likely to occur when no passengers are in the car than the case with passengers. Driver entertainment behavior and passenger interference also affect driving behavior. Moreover, drivers are prone to aggressive driving when making a U-turn. This research not only proposed a new identification method for aggressive driving behavior but also provided a comprehensive understanding of the associated influencing factors which thus benefit the further research and development of safety assistance driving devices.</p>","PeriodicalId":55048,"journal":{"name":"Human Factors and Ergonomics in Manufacturing & Service Industries","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of aggressive driving behavior of online car-hailing drivers based on association classification\",\"authors\":\"Ying Wu, Shuyan Chen, Yongfeng Ma, Wen Cheng, Fangwei Zhang, Guanyang Xing\",\"doi\":\"10.1002/hfm.21015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rapid development of online car-hailing, the related crashes have become a key issue with public concern. Identifying and predicting aggressive driving behaviors is critical to reduce traffic crashes. In this study, we propose a method to recognize aggressive driving behavior based on association classification, with multisource features being employed, including driver emotion, vehicle kinematic characteristics, and road environment. The model performs best in a 10-fold cross-test when the minimum support and minimum confidence are set as 0.01 and 0.8, respectively. Besides, we also compare the performance of aggressive driving behavior recognition classifiers constructed using association classification with other rule-based classification methods, including ID3, C4.5, CART, and Random Forest. The results show that association classification performs better than other classification competitors. Thirty-six if–then rules generated by the association classification are used to analyze the influencing factors and associated mechanisms of aggressive driving behavior. It is found that aggressive driving behavior is highly correlated with driver anger and disgust emotions. Aggressive driving behavior is more likely to occur when no passengers are in the car than the case with passengers. Driver entertainment behavior and passenger interference also affect driving behavior. Moreover, drivers are prone to aggressive driving when making a U-turn. This research not only proposed a new identification method for aggressive driving behavior but also provided a comprehensive understanding of the associated influencing factors which thus benefit the further research and development of safety assistance driving devices.</p>\",\"PeriodicalId\":55048,\"journal\":{\"name\":\"Human Factors and Ergonomics in Manufacturing & Service Industries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Factors and Ergonomics in Manufacturing & Service Industries\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hfm.21015\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Ergonomics in Manufacturing & Service Industries","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hfm.21015","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Identification of aggressive driving behavior of online car-hailing drivers based on association classification
With the rapid development of online car-hailing, the related crashes have become a key issue with public concern. Identifying and predicting aggressive driving behaviors is critical to reduce traffic crashes. In this study, we propose a method to recognize aggressive driving behavior based on association classification, with multisource features being employed, including driver emotion, vehicle kinematic characteristics, and road environment. The model performs best in a 10-fold cross-test when the minimum support and minimum confidence are set as 0.01 and 0.8, respectively. Besides, we also compare the performance of aggressive driving behavior recognition classifiers constructed using association classification with other rule-based classification methods, including ID3, C4.5, CART, and Random Forest. The results show that association classification performs better than other classification competitors. Thirty-six if–then rules generated by the association classification are used to analyze the influencing factors and associated mechanisms of aggressive driving behavior. It is found that aggressive driving behavior is highly correlated with driver anger and disgust emotions. Aggressive driving behavior is more likely to occur when no passengers are in the car than the case with passengers. Driver entertainment behavior and passenger interference also affect driving behavior. Moreover, drivers are prone to aggressive driving when making a U-turn. This research not only proposed a new identification method for aggressive driving behavior but also provided a comprehensive understanding of the associated influencing factors which thus benefit the further research and development of safety assistance driving devices.
期刊介绍:
The purpose of Human Factors and Ergonomics in Manufacturing & Service Industries is to facilitate discovery, integration, and application of scientific knowledge about human aspects of manufacturing, and to provide a forum for worldwide dissemination of such knowledge for its application and benefit to manufacturing industries. The journal covers a broad spectrum of ergonomics and human factors issues with a focus on the design, operation and management of contemporary manufacturing systems, both in the shop floor and office environments, in the quest for manufacturing agility, i.e. enhancement and integration of human skills with hardware performance for improved market competitiveness, management of change, product and process quality, and human-system reliability. The inter- and cross-disciplinary nature of the journal allows for a wide scope of issues relevant to manufacturing system design and engineering, human resource management, social, organizational, safety, and health issues. Examples of specific subject areas of interest include: implementation of advanced manufacturing technology, human aspects of computer-aided design and engineering, work design, compensation and appraisal, selection training and education, labor-management relations, agile manufacturing and virtual companies, human factors in total quality management, prevention of work-related musculoskeletal disorders, ergonomics of workplace, equipment and tool design, ergonomics programs, guides and standards for industry, automation safety and robot systems, human skills development and knowledge enhancing technologies, reliability, and safety and worker health issues.