可定制的水凝胶非线性粘弹性行为

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Nada Qari, Zhaoqiang Song, Hamed Hosseini-Toudeshki, Chenghai Li, Shengqiang Cai
{"title":"可定制的水凝胶非线性粘弹性行为","authors":"Nada Qari,&nbsp;Zhaoqiang Song,&nbsp;Hamed Hosseini-Toudeshki,&nbsp;Chenghai Li,&nbsp;Shengqiang Cai","doi":"10.1007/s11043-023-09640-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigate the viscoelastic properties of hydrogels through stress relaxation experiments to better understand the force-dependent dynamics of these materials with the aspiration of expanding their application envelope within the biomedical field and beyond. We experimentally studied the viscoelastic behavior of 4 different types of hydrogels: covalently crosslinked polyacrylamide (PAAm), covalently crosslinked PAAm network immersed in a viscous alginate solution, ionically crosslinked alginate along with crosslinked PAAm-alginate double network. Through our investigations, we demonstrate that we can tailor the viscoelasticity of a covalently bonded PAAm network by tuning the viscosity of the solution in the gel. Moreover, based on the stress relaxation test of ionically crosslinked alginate gel and the double network gel, we have revealed the quantitative correlation between the ionic bond dissociation and force-dependent viscoelastic behavior of gels containing ionic crosslinks.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailorable non-linear viscoelastic behavior of hydrogels\",\"authors\":\"Nada Qari,&nbsp;Zhaoqiang Song,&nbsp;Hamed Hosseini-Toudeshki,&nbsp;Chenghai Li,&nbsp;Shengqiang Cai\",\"doi\":\"10.1007/s11043-023-09640-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we investigate the viscoelastic properties of hydrogels through stress relaxation experiments to better understand the force-dependent dynamics of these materials with the aspiration of expanding their application envelope within the biomedical field and beyond. We experimentally studied the viscoelastic behavior of 4 different types of hydrogels: covalently crosslinked polyacrylamide (PAAm), covalently crosslinked PAAm network immersed in a viscous alginate solution, ionically crosslinked alginate along with crosslinked PAAm-alginate double network. Through our investigations, we demonstrate that we can tailor the viscoelasticity of a covalently bonded PAAm network by tuning the viscosity of the solution in the gel. Moreover, based on the stress relaxation test of ionically crosslinked alginate gel and the double network gel, we have revealed the quantitative correlation between the ionic bond dissociation and force-dependent viscoelastic behavior of gels containing ionic crosslinks.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-023-09640-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-023-09640-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们通过应力松弛实验研究了水凝胶的粘弹性能,以便更好地了解这些材料受力影响的动力学特性,从而扩大它们在生物医学领域及其他领域的应用范围。我们通过实验研究了 4 种不同类型水凝胶的粘弹性行为:共价交联聚丙烯酰胺(PAAm)、浸入粘性海藻酸溶液中的共价交联 PAAm 网络、离子交联海藻酸以及交联 PAAm-海藻酸双层网络。通过研究,我们证明可以通过调节凝胶中溶液的粘度来定制共价键合 PAAm 网络的粘弹性。此外,基于离子交联海藻酸凝胶和双网络凝胶的应力松弛测试,我们揭示了含有离子交联的凝胶的离子键解离与力相关粘弹性行为之间的定量相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailorable non-linear viscoelastic behavior of hydrogels

Tailorable non-linear viscoelastic behavior of hydrogels

Tailorable non-linear viscoelastic behavior of hydrogels

In this work, we investigate the viscoelastic properties of hydrogels through stress relaxation experiments to better understand the force-dependent dynamics of these materials with the aspiration of expanding their application envelope within the biomedical field and beyond. We experimentally studied the viscoelastic behavior of 4 different types of hydrogels: covalently crosslinked polyacrylamide (PAAm), covalently crosslinked PAAm network immersed in a viscous alginate solution, ionically crosslinked alginate along with crosslinked PAAm-alginate double network. Through our investigations, we demonstrate that we can tailor the viscoelasticity of a covalently bonded PAAm network by tuning the viscosity of the solution in the gel. Moreover, based on the stress relaxation test of ionically crosslinked alginate gel and the double network gel, we have revealed the quantitative correlation between the ionic bond dissociation and force-dependent viscoelastic behavior of gels containing ionic crosslinks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信