Armando Alibrandi, Rolando di Primio, Alexander Bartholomäus, Jens Kallmeyer
{"title":"一种改进的基于异辛烷的原油DNA提取方法","authors":"Armando Alibrandi, Rolando di Primio, Alexander Bartholomäus, Jens Kallmeyer","doi":"10.1002/mlf2.12081","DOIUrl":null,"url":null,"abstract":"Abstract Microbes from oil reservoirs shape petroleum composition through processes such as biodegradation or souring. Such processes are considered economically detrimental and might pose health and safety hazards. It is therefore crucial to understand the composition of a reservoir's microbial community and its metabolic capabilities. However, such analyses are hindered by difficulties in extracting DNA from such complex fluids as crude oil. Here, we present a novel DNA extraction method from oils with a wide American Petroleum Institute (API) gravity (density) range. We investigated the ability to extract cells from oils with different solvents and surfactants, the latter both nonionic and ionic. Furthermore, we evaluated three DNA extraction methods. Overall, the best DNA yields and the highest number of 16S rRNA reads were achieved with isooctane as a solvent, followed by an ionic surfactant treatment using sodium dodecyl sulfate and DNA extraction using the PowerSoil Pro Kit (Qiagen). The final method was then applied to various oils from oil reservoirs collected in aseptic conditions. Despite the expected low cell density of 10 1 –10 3 cells/ml, the new method yielded reliable results, with average 16S rRNA sequencing reads in the order of 41431 (±8860) per sample. Thermophilic, halophilic, and anaerobic taxa, which are most likely to be indigenous to the oil reservoir, were found in all samples. API gravity and DNA yield, despite the sufficient DNA obtained, did not show a correlation.","PeriodicalId":94145,"journal":{"name":"mLife","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified isooctane‐based DNA extraction method from crude oil\",\"authors\":\"Armando Alibrandi, Rolando di Primio, Alexander Bartholomäus, Jens Kallmeyer\",\"doi\":\"10.1002/mlf2.12081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Microbes from oil reservoirs shape petroleum composition through processes such as biodegradation or souring. Such processes are considered economically detrimental and might pose health and safety hazards. It is therefore crucial to understand the composition of a reservoir's microbial community and its metabolic capabilities. However, such analyses are hindered by difficulties in extracting DNA from such complex fluids as crude oil. Here, we present a novel DNA extraction method from oils with a wide American Petroleum Institute (API) gravity (density) range. We investigated the ability to extract cells from oils with different solvents and surfactants, the latter both nonionic and ionic. Furthermore, we evaluated three DNA extraction methods. Overall, the best DNA yields and the highest number of 16S rRNA reads were achieved with isooctane as a solvent, followed by an ionic surfactant treatment using sodium dodecyl sulfate and DNA extraction using the PowerSoil Pro Kit (Qiagen). The final method was then applied to various oils from oil reservoirs collected in aseptic conditions. Despite the expected low cell density of 10 1 –10 3 cells/ml, the new method yielded reliable results, with average 16S rRNA sequencing reads in the order of 41431 (±8860) per sample. Thermophilic, halophilic, and anaerobic taxa, which are most likely to be indigenous to the oil reservoir, were found in all samples. API gravity and DNA yield, despite the sufficient DNA obtained, did not show a correlation.\",\"PeriodicalId\":94145,\"journal\":{\"name\":\"mLife\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/mlf2.12081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
来自油藏的微生物通过生物降解或酸化等过程形成石油成分。这些工艺被认为对经济有害,并可能对健康和安全造成危害。因此,了解储层微生物群落的组成及其代谢能力至关重要。然而,这种分析受到从原油等复杂液体中提取DNA的困难的阻碍。在这里,我们提出了一种新的DNA提取方法,从石油具有广泛的美国石油协会(API)的重力(密度)范围。我们研究了不同溶剂和表面活性剂(非离子型和离子型)从油脂中提取细胞的能力。此外,我们评估了三种DNA提取方法。总的来说,使用异辛烷作为溶剂,然后使用十二烷基硫酸钠进行离子表面活性剂处理,使用PowerSoil Pro Kit (Qiagen)进行DNA提取,获得了最佳的DNA产量和最高的16S rRNA读取数。然后将最后的方法应用于在无菌条件下从油藏中收集的各种油。尽管预期的低细胞密度为10 1 -10 3个细胞/ml,但新方法获得了可靠的结果,平均16S rRNA测序读数为41431(±8860)个样本。在所有样品中都发现了嗜热、嗜盐和厌氧分类群,这些分类群最有可能是油藏的土生性。原料药重力和DNA产率,尽管获得了足够的DNA,没有显示出相关性。
A modified isooctane‐based DNA extraction method from crude oil
Abstract Microbes from oil reservoirs shape petroleum composition through processes such as biodegradation or souring. Such processes are considered economically detrimental and might pose health and safety hazards. It is therefore crucial to understand the composition of a reservoir's microbial community and its metabolic capabilities. However, such analyses are hindered by difficulties in extracting DNA from such complex fluids as crude oil. Here, we present a novel DNA extraction method from oils with a wide American Petroleum Institute (API) gravity (density) range. We investigated the ability to extract cells from oils with different solvents and surfactants, the latter both nonionic and ionic. Furthermore, we evaluated three DNA extraction methods. Overall, the best DNA yields and the highest number of 16S rRNA reads were achieved with isooctane as a solvent, followed by an ionic surfactant treatment using sodium dodecyl sulfate and DNA extraction using the PowerSoil Pro Kit (Qiagen). The final method was then applied to various oils from oil reservoirs collected in aseptic conditions. Despite the expected low cell density of 10 1 –10 3 cells/ml, the new method yielded reliable results, with average 16S rRNA sequencing reads in the order of 41431 (±8860) per sample. Thermophilic, halophilic, and anaerobic taxa, which are most likely to be indigenous to the oil reservoir, were found in all samples. API gravity and DNA yield, despite the sufficient DNA obtained, did not show a correlation.