{"title":"约旦干热气候下自然通风对不同居住建筑热工性能的影响","authors":"Esraa Shehadeh Abbaas, Mazran Ismail, Ala’eddin Ahmad Saif, Muhamad Azhar Ghazali","doi":"10.47836/pjst.32.1.03","DOIUrl":null,"url":null,"abstract":"This work presents a simulation study on the impact of natural ventilation on the thermal performance and thermal comfort of residential buildings of different forms in the hot-dry climate of Amman, the capital of Jordan. Three existing triple-storey residential buildings with different forms, i.e., rectangular, L-shape, and U-shape, are taken as case studies. Models with similar construction and dimensions of the buildings under investigation are designed using the OpenStudio plugin SketchUp software. Two rooms within these buildings have been considered for simulation with the aid of the EnergyPlus simulator for two cases: the basic case with no ventilation and the case with ventilation. The thermal parameters, including the air temperature, relative humidity, air speed, and mean radiant temperature of both rooms, have been extracted from the simulation. The thermal performance of these buildings is analyzed based on the indoor air temperature and mean radiant temperature, while the thermal performance is investigated via the ASHRAE-55 adaptive model. The results show that the rectangular-shaped building has the best thermal performance in unventilated conditions for the middle room on the middle floor (Room 1). In contrast, the U-shape shows better results for the west-northern room on the same floor (Room 2). On the other hand, introducing natural ventilation to the buildings reduces the indoor temperature and, subsequently, enhances the thermal performance where the buildings transform to be within the comfort zone most of the time, according to the ASHRAE-55 adaptive model. Generally, rectangular and U-shaped buildings show comparable thermal performance, while L-shaped buildings have relatively the worst performance.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":"23 4","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Natural Ventilation on Thermal Performance of Different Residential Building Forms in the Hot-dry Climate of Jordan\",\"authors\":\"Esraa Shehadeh Abbaas, Mazran Ismail, Ala’eddin Ahmad Saif, Muhamad Azhar Ghazali\",\"doi\":\"10.47836/pjst.32.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a simulation study on the impact of natural ventilation on the thermal performance and thermal comfort of residential buildings of different forms in the hot-dry climate of Amman, the capital of Jordan. Three existing triple-storey residential buildings with different forms, i.e., rectangular, L-shape, and U-shape, are taken as case studies. Models with similar construction and dimensions of the buildings under investigation are designed using the OpenStudio plugin SketchUp software. Two rooms within these buildings have been considered for simulation with the aid of the EnergyPlus simulator for two cases: the basic case with no ventilation and the case with ventilation. The thermal parameters, including the air temperature, relative humidity, air speed, and mean radiant temperature of both rooms, have been extracted from the simulation. The thermal performance of these buildings is analyzed based on the indoor air temperature and mean radiant temperature, while the thermal performance is investigated via the ASHRAE-55 adaptive model. The results show that the rectangular-shaped building has the best thermal performance in unventilated conditions for the middle room on the middle floor (Room 1). In contrast, the U-shape shows better results for the west-northern room on the same floor (Room 2). On the other hand, introducing natural ventilation to the buildings reduces the indoor temperature and, subsequently, enhances the thermal performance where the buildings transform to be within the comfort zone most of the time, according to the ASHRAE-55 adaptive model. Generally, rectangular and U-shaped buildings show comparable thermal performance, while L-shaped buildings have relatively the worst performance.\",\"PeriodicalId\":46234,\"journal\":{\"name\":\"Pertanika Journal of Science and Technology\",\"volume\":\"23 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pertanika Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/pjst.32.1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.32.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Effect of Natural Ventilation on Thermal Performance of Different Residential Building Forms in the Hot-dry Climate of Jordan
This work presents a simulation study on the impact of natural ventilation on the thermal performance and thermal comfort of residential buildings of different forms in the hot-dry climate of Amman, the capital of Jordan. Three existing triple-storey residential buildings with different forms, i.e., rectangular, L-shape, and U-shape, are taken as case studies. Models with similar construction and dimensions of the buildings under investigation are designed using the OpenStudio plugin SketchUp software. Two rooms within these buildings have been considered for simulation with the aid of the EnergyPlus simulator for two cases: the basic case with no ventilation and the case with ventilation. The thermal parameters, including the air temperature, relative humidity, air speed, and mean radiant temperature of both rooms, have been extracted from the simulation. The thermal performance of these buildings is analyzed based on the indoor air temperature and mean radiant temperature, while the thermal performance is investigated via the ASHRAE-55 adaptive model. The results show that the rectangular-shaped building has the best thermal performance in unventilated conditions for the middle room on the middle floor (Room 1). In contrast, the U-shape shows better results for the west-northern room on the same floor (Room 2). On the other hand, introducing natural ventilation to the buildings reduces the indoor temperature and, subsequently, enhances the thermal performance where the buildings transform to be within the comfort zone most of the time, according to the ASHRAE-55 adaptive model. Generally, rectangular and U-shaped buildings show comparable thermal performance, while L-shaped buildings have relatively the worst performance.
期刊介绍:
Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.