{"title":"基于层次特征的图像超分辨率深度网络","authors":"Xin Yang, Yifan Zhang, Dake Zhou","doi":"10.24425/bpasts.2021.139616","DOIUrl":null,"url":null,"abstract":". To better extract feature maps from low-resolution (LR) images and recover high-frequency information in the high-resolution (HR) images in image super-resolution (SR), we propose in this paper a new SR algorithm based on a deep convolutional neural network (CNN). The network structure is composed of the feature extraction part and the reconstruction part. The extraction network extracts the feature maps of LR images and uses the sub-pixel convolutional neural network as the up-sampling operator. Skip connection, densely connected neural networks and feature map fusion are used to extract information from hierarchical feature maps at the end of the network, which can effectively reduce the dimension of the feature maps. In the reconstruction network, we add a 3 × 3 convolution layer based on the original sub-pixel convolution layer, which can allow the reconstruction network to have better nonlinear mapping ability. The experiments show that the algorithm results in a significant improvement in PSNR, SSIM, and human visual effects as compared with some state-of-the-art algorithms based on deep learning.","PeriodicalId":55299,"journal":{"name":"Bulletin of the Polish Academy of Sciences-Technical Sciences","volume":"13 14","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep networks for image super-resolution using hierarchical features\",\"authors\":\"Xin Yang, Yifan Zhang, Dake Zhou\",\"doi\":\"10.24425/bpasts.2021.139616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". To better extract feature maps from low-resolution (LR) images and recover high-frequency information in the high-resolution (HR) images in image super-resolution (SR), we propose in this paper a new SR algorithm based on a deep convolutional neural network (CNN). The network structure is composed of the feature extraction part and the reconstruction part. The extraction network extracts the feature maps of LR images and uses the sub-pixel convolutional neural network as the up-sampling operator. Skip connection, densely connected neural networks and feature map fusion are used to extract information from hierarchical feature maps at the end of the network, which can effectively reduce the dimension of the feature maps. In the reconstruction network, we add a 3 × 3 convolution layer based on the original sub-pixel convolution layer, which can allow the reconstruction network to have better nonlinear mapping ability. The experiments show that the algorithm results in a significant improvement in PSNR, SSIM, and human visual effects as compared with some state-of-the-art algorithms based on deep learning.\",\"PeriodicalId\":55299,\"journal\":{\"name\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"volume\":\"13 14\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/bpasts.2021.139616\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences-Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/bpasts.2021.139616","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep networks for image super-resolution using hierarchical features
. To better extract feature maps from low-resolution (LR) images and recover high-frequency information in the high-resolution (HR) images in image super-resolution (SR), we propose in this paper a new SR algorithm based on a deep convolutional neural network (CNN). The network structure is composed of the feature extraction part and the reconstruction part. The extraction network extracts the feature maps of LR images and uses the sub-pixel convolutional neural network as the up-sampling operator. Skip connection, densely connected neural networks and feature map fusion are used to extract information from hierarchical feature maps at the end of the network, which can effectively reduce the dimension of the feature maps. In the reconstruction network, we add a 3 × 3 convolution layer based on the original sub-pixel convolution layer, which can allow the reconstruction network to have better nonlinear mapping ability. The experiments show that the algorithm results in a significant improvement in PSNR, SSIM, and human visual effects as compared with some state-of-the-art algorithms based on deep learning.
期刊介绍:
The Bulletin of the Polish Academy of Sciences: Technical Sciences is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred:
Artificial and Computational Intelligence,
Biomedical Engineering and Biotechnology,
Civil Engineering,
Control, Informatics and Robotics,
Electronics, Telecommunication and Optoelectronics,
Mechanical and Aeronautical Engineering, Thermodynamics,
Material Science and Nanotechnology,
Power Systems and Power Electronics.