{"title":"DNP-NMR光谱回旋管的研究进展","authors":"Kacper Nowak","doi":"10.24425/bpasts.2022.140354","DOIUrl":null,"url":null,"abstract":". This paper outlines the principle of the DNP-NMR technique. The gyrotron, as a very promising microwave source for NMR spectroscopy, is evaluated. Four factors: power stability, power tuning, frequency stability, and frequency tuning determine the usability of the gyrotron device. The causes of instabilities, as well as the methods of overcoming limitations and extending usability are explained with reference to the theory, the numerical and experimental results reported by gyrotron groups.","PeriodicalId":55299,"journal":{"name":"Bulletin of the Polish Academy of Sciences-Technical Sciences","volume":"28 5","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The gyrotron for DNP-NMR spectroscopy: A review\",\"authors\":\"Kacper Nowak\",\"doi\":\"10.24425/bpasts.2022.140354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper outlines the principle of the DNP-NMR technique. The gyrotron, as a very promising microwave source for NMR spectroscopy, is evaluated. Four factors: power stability, power tuning, frequency stability, and frequency tuning determine the usability of the gyrotron device. The causes of instabilities, as well as the methods of overcoming limitations and extending usability are explained with reference to the theory, the numerical and experimental results reported by gyrotron groups.\",\"PeriodicalId\":55299,\"journal\":{\"name\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"volume\":\"28 5\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Polish Academy of Sciences-Technical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/bpasts.2022.140354\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Polish Academy of Sciences-Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/bpasts.2022.140354","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
. This paper outlines the principle of the DNP-NMR technique. The gyrotron, as a very promising microwave source for NMR spectroscopy, is evaluated. Four factors: power stability, power tuning, frequency stability, and frequency tuning determine the usability of the gyrotron device. The causes of instabilities, as well as the methods of overcoming limitations and extending usability are explained with reference to the theory, the numerical and experimental results reported by gyrotron groups.
期刊介绍:
The Bulletin of the Polish Academy of Sciences: Technical Sciences is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred:
Artificial and Computational Intelligence,
Biomedical Engineering and Biotechnology,
Civil Engineering,
Control, Informatics and Robotics,
Electronics, Telecommunication and Optoelectronics,
Mechanical and Aeronautical Engineering, Thermodynamics,
Material Science and Nanotechnology,
Power Systems and Power Electronics.