Jake Janssen, Ghadir Haikal, Erin DeCarlo, Michael Hartnett, Matthew Kirby
{"title":"基于物理信息的通用卷积网络损伤材料计算模型","authors":"Jake Janssen, Ghadir Haikal, Erin DeCarlo, Michael Hartnett, Matthew Kirby","doi":"10.1115/1.4063863","DOIUrl":null,"url":null,"abstract":"Abstract Despite their effectiveness in modeling complex phenomena, the adoption of machine learning (ML) methods in computational mechanics has been hindered by the lack of availability of training datasets, limitations on accuracy of out-of-sample predictions, and computational cost. This work presents a physics-informed ML approach and network architecture that addresses these challenges in the context of modeling the behavior of materials with damage. The proposed methodology is a novel Physics-Informed General Convolutional Network (PIGCN) framework that features (1) the fusion of a dense edge network with a convolutional neural network (CNN) for specifying and enforcing boundary conditions and geometry information, (2) a data augmentation approach for learning more information from a static dataset that significantly reduces the necessary data for training, and (3) the use of a CNN for physics-informed ML applications, which is not as well explored as graph networks in the current literature. The PIGCN framework is demonstrated for a simple two-dimensional, rectangular plate with a hole or elliptical defect in a linear elastic material, but the approach is extensible to three dimensions and more complex problems. The results presented in the paper show that the PIGCN framework improves physics-based loss convergence and predictive capability compared to ML-only (physics-uninformed) architectures. A key outcome of this research is the significant reduction in training data requirements compared to ML-only models, which could reduce a considerable hurdle to using data-driven models in materials engineering where material experimental data is often limited.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"87 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Physics-Informed General Convolutional Network for the Computational Modeling of Materials with Damage\",\"authors\":\"Jake Janssen, Ghadir Haikal, Erin DeCarlo, Michael Hartnett, Matthew Kirby\",\"doi\":\"10.1115/1.4063863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Despite their effectiveness in modeling complex phenomena, the adoption of machine learning (ML) methods in computational mechanics has been hindered by the lack of availability of training datasets, limitations on accuracy of out-of-sample predictions, and computational cost. This work presents a physics-informed ML approach and network architecture that addresses these challenges in the context of modeling the behavior of materials with damage. The proposed methodology is a novel Physics-Informed General Convolutional Network (PIGCN) framework that features (1) the fusion of a dense edge network with a convolutional neural network (CNN) for specifying and enforcing boundary conditions and geometry information, (2) a data augmentation approach for learning more information from a static dataset that significantly reduces the necessary data for training, and (3) the use of a CNN for physics-informed ML applications, which is not as well explored as graph networks in the current literature. The PIGCN framework is demonstrated for a simple two-dimensional, rectangular plate with a hole or elliptical defect in a linear elastic material, but the approach is extensible to three dimensions and more complex problems. The results presented in the paper show that the PIGCN framework improves physics-based loss convergence and predictive capability compared to ML-only (physics-uninformed) architectures. A key outcome of this research is the significant reduction in training data requirements compared to ML-only models, which could reduce a considerable hurdle to using data-driven models in materials engineering where material experimental data is often limited.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063863\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063863","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Physics-Informed General Convolutional Network for the Computational Modeling of Materials with Damage
Abstract Despite their effectiveness in modeling complex phenomena, the adoption of machine learning (ML) methods in computational mechanics has been hindered by the lack of availability of training datasets, limitations on accuracy of out-of-sample predictions, and computational cost. This work presents a physics-informed ML approach and network architecture that addresses these challenges in the context of modeling the behavior of materials with damage. The proposed methodology is a novel Physics-Informed General Convolutional Network (PIGCN) framework that features (1) the fusion of a dense edge network with a convolutional neural network (CNN) for specifying and enforcing boundary conditions and geometry information, (2) a data augmentation approach for learning more information from a static dataset that significantly reduces the necessary data for training, and (3) the use of a CNN for physics-informed ML applications, which is not as well explored as graph networks in the current literature. The PIGCN framework is demonstrated for a simple two-dimensional, rectangular plate with a hole or elliptical defect in a linear elastic material, but the approach is extensible to three dimensions and more complex problems. The results presented in the paper show that the PIGCN framework improves physics-based loss convergence and predictive capability compared to ML-only (physics-uninformed) architectures. A key outcome of this research is the significant reduction in training data requirements compared to ML-only models, which could reduce a considerable hurdle to using data-driven models in materials engineering where material experimental data is often limited.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping