Zhangyue Shi, Boris Oskolkov, Wenmeng Tian, Chen Kan, Chenang Liu
{"title":"通过集成区块链和伪装加密在信息物理制造系统中的传感器数据保护","authors":"Zhangyue Shi, Boris Oskolkov, Wenmeng Tian, Chen Kan, Chenang Liu","doi":"10.1115/1.4063859","DOIUrl":null,"url":null,"abstract":"Abstract The advancement of sensing technology enables efficient data collection from manufacturing systems for monitoring and control. Furthermore, with the rapid development of the Internet of Things (IoT) and information technologies, more and more manufacturing systems become cyber-enabled, facilitating real-time data sharing and information exchange, which significantly improves the flexibility and efficiency of manufacturing systems. However, the cyber-enabled environment may pose the collected sensor data under high risks of cyber-physical attacks during the data and information sharing. Specifically, cyber-physical attacks could target the manufacturing process and/or the data transmission process to maliciously tamper the sensor data, resulting in false alarms or failures in anomaly detection in monitoring. In addition, the cyber-physical attacks may also enable illegal data access without authorization and cause the leakage of key product/process information. Therefore, it becomes critical to develop an effective approach to protect data from these attacks so that the cyber-physical security of the manufacturing systems could be assured in the cyber-enabled environment. To achieve this goal, this paper proposes an integrative blockchain-enabled data protection method by leveraging camouflaged asymmetry encryption. A real-world case study that protects cyber-physical security of collected sensor data in additive manufacturing is presented to demonstrate the effectiveness of the proposed method. The results demonstrate that malicious tampering could be detected in a relatively short time (less than 0.05ms) and the risk of unauthorized data access is significantly reduced as well.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensor Data Protection through Integration of Blockchain and Camouflaged Encryption in Cyber-physical Manufacturing Systems\",\"authors\":\"Zhangyue Shi, Boris Oskolkov, Wenmeng Tian, Chen Kan, Chenang Liu\",\"doi\":\"10.1115/1.4063859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The advancement of sensing technology enables efficient data collection from manufacturing systems for monitoring and control. Furthermore, with the rapid development of the Internet of Things (IoT) and information technologies, more and more manufacturing systems become cyber-enabled, facilitating real-time data sharing and information exchange, which significantly improves the flexibility and efficiency of manufacturing systems. However, the cyber-enabled environment may pose the collected sensor data under high risks of cyber-physical attacks during the data and information sharing. Specifically, cyber-physical attacks could target the manufacturing process and/or the data transmission process to maliciously tamper the sensor data, resulting in false alarms or failures in anomaly detection in monitoring. In addition, the cyber-physical attacks may also enable illegal data access without authorization and cause the leakage of key product/process information. Therefore, it becomes critical to develop an effective approach to protect data from these attacks so that the cyber-physical security of the manufacturing systems could be assured in the cyber-enabled environment. To achieve this goal, this paper proposes an integrative blockchain-enabled data protection method by leveraging camouflaged asymmetry encryption. A real-world case study that protects cyber-physical security of collected sensor data in additive manufacturing is presented to demonstrate the effectiveness of the proposed method. The results demonstrate that malicious tampering could be detected in a relatively short time (less than 0.05ms) and the risk of unauthorized data access is significantly reduced as well.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063859\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063859","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Sensor Data Protection through Integration of Blockchain and Camouflaged Encryption in Cyber-physical Manufacturing Systems
Abstract The advancement of sensing technology enables efficient data collection from manufacturing systems for monitoring and control. Furthermore, with the rapid development of the Internet of Things (IoT) and information technologies, more and more manufacturing systems become cyber-enabled, facilitating real-time data sharing and information exchange, which significantly improves the flexibility and efficiency of manufacturing systems. However, the cyber-enabled environment may pose the collected sensor data under high risks of cyber-physical attacks during the data and information sharing. Specifically, cyber-physical attacks could target the manufacturing process and/or the data transmission process to maliciously tamper the sensor data, resulting in false alarms or failures in anomaly detection in monitoring. In addition, the cyber-physical attacks may also enable illegal data access without authorization and cause the leakage of key product/process information. Therefore, it becomes critical to develop an effective approach to protect data from these attacks so that the cyber-physical security of the manufacturing systems could be assured in the cyber-enabled environment. To achieve this goal, this paper proposes an integrative blockchain-enabled data protection method by leveraging camouflaged asymmetry encryption. A real-world case study that protects cyber-physical security of collected sensor data in additive manufacturing is presented to demonstrate the effectiveness of the proposed method. The results demonstrate that malicious tampering could be detected in a relatively short time (less than 0.05ms) and the risk of unauthorized data access is significantly reduced as well.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping