Fabrício Xavier Cerci, Abraão Nazário, Guilherme Falcão da Silva Campos, Layla Leão Lima Teixeira
{"title":"使用预测模型来定义牛的健康状况","authors":"Fabrício Xavier Cerci, Abraão Nazário, Guilherme Falcão da Silva Campos, Layla Leão Lima Teixeira","doi":"10.53660/1194.prw2706","DOIUrl":null,"url":null,"abstract":"Segundo a Embrapa, o Brasil é um dos maiores produtores de carne bovina, com o maior rebanho em 2015. Este artigo propõe um modelo preditivo utilizando tecnologias disponíveis no campo para identificar a saúde dos animais, permitindo um tratamento mais eficaz e melhorando a qualidade do produto. Utilizamos dados do Kaggle e programação em Python com bibliotecas relevantes para criar o algoritmo preditivo. Após testes, o algoritmo DecisionTreeClassifier foi escolhido e treinado com o conjunto de dados. O modelo alcançou aproximadamente 100% de precisão na identificação da saúde dos animais utilizando informações não utilizadas no treinamento. Porém, o tamanho do dataset pode ter impactado negativamente nos testes e treinamentos. Apesar disso, conclui-se que é possível utilizar um modelo preditivo baseado em dados colhidos com tecnologias existentes para a tomada ágil de medidas e aumentar a possibilidade de recuperação dos animais.","PeriodicalId":89213,"journal":{"name":"Peer review : emerging trends and key debates in undergraduate education","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilização de modelo preditivo para definir a saúde de bovinos\",\"authors\":\"Fabrício Xavier Cerci, Abraão Nazário, Guilherme Falcão da Silva Campos, Layla Leão Lima Teixeira\",\"doi\":\"10.53660/1194.prw2706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segundo a Embrapa, o Brasil é um dos maiores produtores de carne bovina, com o maior rebanho em 2015. Este artigo propõe um modelo preditivo utilizando tecnologias disponíveis no campo para identificar a saúde dos animais, permitindo um tratamento mais eficaz e melhorando a qualidade do produto. Utilizamos dados do Kaggle e programação em Python com bibliotecas relevantes para criar o algoritmo preditivo. Após testes, o algoritmo DecisionTreeClassifier foi escolhido e treinado com o conjunto de dados. O modelo alcançou aproximadamente 100% de precisão na identificação da saúde dos animais utilizando informações não utilizadas no treinamento. Porém, o tamanho do dataset pode ter impactado negativamente nos testes e treinamentos. Apesar disso, conclui-se que é possível utilizar um modelo preditivo baseado em dados colhidos com tecnologias existentes para a tomada ágil de medidas e aumentar a possibilidade de recuperação dos animais.\",\"PeriodicalId\":89213,\"journal\":{\"name\":\"Peer review : emerging trends and key debates in undergraduate education\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer review : emerging trends and key debates in undergraduate education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53660/1194.prw2706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer review : emerging trends and key debates in undergraduate education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53660/1194.prw2706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utilização de modelo preditivo para definir a saúde de bovinos
Segundo a Embrapa, o Brasil é um dos maiores produtores de carne bovina, com o maior rebanho em 2015. Este artigo propõe um modelo preditivo utilizando tecnologias disponíveis no campo para identificar a saúde dos animais, permitindo um tratamento mais eficaz e melhorando a qualidade do produto. Utilizamos dados do Kaggle e programação em Python com bibliotecas relevantes para criar o algoritmo preditivo. Após testes, o algoritmo DecisionTreeClassifier foi escolhido e treinado com o conjunto de dados. O modelo alcançou aproximadamente 100% de precisão na identificação da saúde dos animais utilizando informações não utilizadas no treinamento. Porém, o tamanho do dataset pode ter impactado negativamente nos testes e treinamentos. Apesar disso, conclui-se que é possível utilizar um modelo preditivo baseado em dados colhidos com tecnologias existentes para a tomada ágil de medidas e aumentar a possibilidade de recuperação dos animais.