关于Rödl图的定理

IF 0.7 4区 数学 Q2 MATHEMATICS
Lior Gishboliner, Asaf Shapira
{"title":"关于Rödl图的定理","authors":"Lior Gishboliner, Asaf Shapira","doi":"10.37236/12189","DOIUrl":null,"url":null,"abstract":"A theorem of Rödl states that for every fixed $F$ and $\\varepsilon>0$ there is $\\delta=\\delta_F(\\varepsilon)$ so that every induced $F$-free graph contains a vertex set of size $\\delta n$ whose edge density is either at most $\\varepsilon$ or at least $1-\\varepsilon$. Rödl's proof relied on the regularity lemma, hence it supplied only a tower-type bound for $\\delta$. Fox and Sudakov conjectured that $\\delta$ can be made polynomial in $\\varepsilon$, and a recent result of Fox, Nguyen, Scott and Seymour shows that this conjecture holds when $F=P_4$. In fact, they show that the same conclusion holds even if $G$ contains few copies of $P_4$. In this note we give a short proof of a more general statement.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"60 2","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Rödl's Theorem for Cographs\",\"authors\":\"Lior Gishboliner, Asaf Shapira\",\"doi\":\"10.37236/12189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theorem of Rödl states that for every fixed $F$ and $\\\\varepsilon>0$ there is $\\\\delta=\\\\delta_F(\\\\varepsilon)$ so that every induced $F$-free graph contains a vertex set of size $\\\\delta n$ whose edge density is either at most $\\\\varepsilon$ or at least $1-\\\\varepsilon$. Rödl's proof relied on the regularity lemma, hence it supplied only a tower-type bound for $\\\\delta$. Fox and Sudakov conjectured that $\\\\delta$ can be made polynomial in $\\\\varepsilon$, and a recent result of Fox, Nguyen, Scott and Seymour shows that this conjecture holds when $F=P_4$. In fact, they show that the same conclusion holds even if $G$ contains few copies of $P_4$. In this note we give a short proof of a more general statement.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"60 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/12189\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/12189","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Rödl的一个定理表明,对于每个固定的$F$和$\varepsilon>0$,存在$\delta=\delta_F(\varepsilon)$,因此每个诱导的$F$自由图包含一个大小为$\delta n$的顶点集,其边密度最多为$\varepsilon$或至少为$1-\varepsilon$。Rödl的证明依赖于正则引理,因此它仅为$\delta$提供了一个塔型界。Fox和Sudakov推测$\delta$可以成为$\varepsilon$的多项式,Fox、Nguyen、Scott和Seymour最近的结果表明,当$F=P_4$。事实上,他们表明,即使$G$包含很少的$P_4$副本,同样的结论也成立。在这篇笔记中,我们对一个更一般的陈述给出一个简短的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Rödl's Theorem for Cographs
A theorem of Rödl states that for every fixed $F$ and $\varepsilon>0$ there is $\delta=\delta_F(\varepsilon)$ so that every induced $F$-free graph contains a vertex set of size $\delta n$ whose edge density is either at most $\varepsilon$ or at least $1-\varepsilon$. Rödl's proof relied on the regularity lemma, hence it supplied only a tower-type bound for $\delta$. Fox and Sudakov conjectured that $\delta$ can be made polynomial in $\varepsilon$, and a recent result of Fox, Nguyen, Scott and Seymour shows that this conjecture holds when $F=P_4$. In fact, they show that the same conclusion holds even if $G$ contains few copies of $P_4$. In this note we give a short proof of a more general statement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信