马尔可夫丢番图方程的广义聚类代数推广

IF 0.7 4区 数学 Q2 MATHEMATICS
Yasuaki Gyoda, Kodai Matsushita
{"title":"马尔可夫丢番图方程的广义聚类代数推广","authors":"Yasuaki Gyoda, Kodai Matsushita","doi":"10.37236/11420","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with two classes of Diophantine equations, $x^2+y^2+z^2+k_3xy+k_1yz+k_2zx=(3+k_1+k_2+k_3)xyz$ and $x^2+y^4+z^4+2xy^2+ky^2z^2+2xz^2=(7+k)xy^2z^2$, where $k_1,k_2,k_3,k$ are nonnegative integers. The former is known as the Markov Diophantine equation if $k_1=k_2=k_3=0$, and the latter is a Diophantine equation recently studied by Lampe if $k=0$. We give algorithms to enumerate all positive integer solutions to these equations, and discuss the structures of the generalized cluster algebras behind them.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"40 6","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of Markov Diophantine Equation via Generalized Cluster Algebra\",\"authors\":\"Yasuaki Gyoda, Kodai Matsushita\",\"doi\":\"10.37236/11420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with two classes of Diophantine equations, $x^2+y^2+z^2+k_3xy+k_1yz+k_2zx=(3+k_1+k_2+k_3)xyz$ and $x^2+y^4+z^4+2xy^2+ky^2z^2+2xz^2=(7+k)xy^2z^2$, where $k_1,k_2,k_3,k$ are nonnegative integers. The former is known as the Markov Diophantine equation if $k_1=k_2=k_3=0$, and the latter is a Diophantine equation recently studied by Lampe if $k=0$. We give algorithms to enumerate all positive integer solutions to these equations, and discuss the structures of the generalized cluster algebras behind them.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"40 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11420\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11420","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了$x^2+y^2+z^2+k_3xy+k_1yz+k_2zx=(3+k_1+k_2+k_3)xyz$和$x^2+y^4+z^4+2xy^2+ky^2z^2 =(7+k)xy^2z^2$这两类丢芬图方程,其中$k_1,k_2,k_3,k$为非负整数。前者在$k_1=k_2=k_3=0$时称为马尔可夫丢番图方程,后者在$k=0$时称为Lampe最近研究的丢番图方程。我们给出了枚举这些方程所有正整数解的算法,并讨论了它们背后的广义聚类代数的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalization of Markov Diophantine Equation via Generalized Cluster Algebra
In this paper, we deal with two classes of Diophantine equations, $x^2+y^2+z^2+k_3xy+k_1yz+k_2zx=(3+k_1+k_2+k_3)xyz$ and $x^2+y^4+z^4+2xy^2+ky^2z^2+2xz^2=(7+k)xy^2z^2$, where $k_1,k_2,k_3,k$ are nonnegative integers. The former is known as the Markov Diophantine equation if $k_1=k_2=k_3=0$, and the latter is a Diophantine equation recently studied by Lampe if $k=0$. We give algorithms to enumerate all positive integer solutions to these equations, and discuss the structures of the generalized cluster algebras behind them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信