{"title":"利用生物纳米孔控制渗透发动机驱动的脂质体","authors":"Hinata Shibuya, Shun Okada, Kan Shoji","doi":"10.20965/jrm.2023.p1213","DOIUrl":null,"url":null,"abstract":"Liposome-based molecular robots that molecular systems are integrated into a giant liposome have been proposed; they are expected to be applied in the fields of medicine, environmental science, food science, and energy science. However, the performance of these molecular robotic components, including intelligence, sensors, and actuators, still hinders their practical use. In particular, the actuators used in the molecular robots, such as molecular motors, do not provide sufficient performance to move the giant liposomes. Hence, we propose an osmotic-engine-driven liposome and demonstrate the migration of liposomes in a microfluidic channel by applying a salt concentration difference between the front and rear of the liposome. Although the migration mechanism is simple and has the potential to provide sufficient mobility performance, control techniques for the movement speed and on/off switching are not established. Herein, we describe a speed control method of osmotic-engine-driven liposomes using pore-forming membrane proteins. In this study, we evaluated the effect of reconstituted α-hemolysin (αHL) nanopores on the water permeability through lipid bilayers. Thereafter, we demonstrated the change in displacement speeds of liposomes with and without nanopores. We expect the speed control method using nanopores to be applied to the liposome-based molecular robots.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"45 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of Osmotic-Engine-Driven Liposomes Using Biological Nanopores\",\"authors\":\"Hinata Shibuya, Shun Okada, Kan Shoji\",\"doi\":\"10.20965/jrm.2023.p1213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liposome-based molecular robots that molecular systems are integrated into a giant liposome have been proposed; they are expected to be applied in the fields of medicine, environmental science, food science, and energy science. However, the performance of these molecular robotic components, including intelligence, sensors, and actuators, still hinders their practical use. In particular, the actuators used in the molecular robots, such as molecular motors, do not provide sufficient performance to move the giant liposomes. Hence, we propose an osmotic-engine-driven liposome and demonstrate the migration of liposomes in a microfluidic channel by applying a salt concentration difference between the front and rear of the liposome. Although the migration mechanism is simple and has the potential to provide sufficient mobility performance, control techniques for the movement speed and on/off switching are not established. Herein, we describe a speed control method of osmotic-engine-driven liposomes using pore-forming membrane proteins. In this study, we evaluated the effect of reconstituted α-hemolysin (αHL) nanopores on the water permeability through lipid bilayers. Thereafter, we demonstrated the change in displacement speeds of liposomes with and without nanopores. We expect the speed control method using nanopores to be applied to the liposome-based molecular robots.\",\"PeriodicalId\":51661,\"journal\":{\"name\":\"Journal of Robotics and Mechatronics\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2023.p1213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
Control of Osmotic-Engine-Driven Liposomes Using Biological Nanopores
Liposome-based molecular robots that molecular systems are integrated into a giant liposome have been proposed; they are expected to be applied in the fields of medicine, environmental science, food science, and energy science. However, the performance of these molecular robotic components, including intelligence, sensors, and actuators, still hinders their practical use. In particular, the actuators used in the molecular robots, such as molecular motors, do not provide sufficient performance to move the giant liposomes. Hence, we propose an osmotic-engine-driven liposome and demonstrate the migration of liposomes in a microfluidic channel by applying a salt concentration difference between the front and rear of the liposome. Although the migration mechanism is simple and has the potential to provide sufficient mobility performance, control techniques for the movement speed and on/off switching are not established. Herein, we describe a speed control method of osmotic-engine-driven liposomes using pore-forming membrane proteins. In this study, we evaluated the effect of reconstituted α-hemolysin (αHL) nanopores on the water permeability through lipid bilayers. Thereafter, we demonstrated the change in displacement speeds of liposomes with and without nanopores. We expect the speed control method using nanopores to be applied to the liposome-based molecular robots.
期刊介绍:
First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.