{"title":"微柱基质对细胞核的变形和捕获可能影响DNA的抗紫外线辐射能力","authors":"Kazuaki Nagayama, Chiaki Sagawa, Akiko Sato","doi":"10.20965/jrm.2023.p1158","DOIUrl":null,"url":null,"abstract":"DNA damage induced by the ultraviolet (UV) light, which affects adversely on genome stability, causes many kinds of diseases. Thus, a biochemical or biomechanical method in DNA damage protection is well required. In the present study, we investigated the effects of mechanical factors, such as deformation of cell nucleus using polydimethylsiloxane (PDMS)-based microfabricated array of micropillars, on UV radiation resistance of DNA in cultured cells. The epithelial-like cells spread normally in the spaces between micropillars and their nuclei showed remarkable deformation and appeared to be “trapped” mechanically on the array of pillars. We found that the UV radiation-induced DNA damage estimated by the fluorescent intensity of the phospho-histone γ-H2AX, was significantly inhibited with the nucleus deformation on the pillars. The result indicates that the inhibition of UV radiation-induced DNA damages might be resulted from structural change of DNA caused by the mechanical stress of the cell nucleus on the micropillars.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"38 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation and Trapping of Cell Nucleus Using Micropillar Substrates Possibly Affect UV Radiation Resistance of DNA\",\"authors\":\"Kazuaki Nagayama, Chiaki Sagawa, Akiko Sato\",\"doi\":\"10.20965/jrm.2023.p1158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA damage induced by the ultraviolet (UV) light, which affects adversely on genome stability, causes many kinds of diseases. Thus, a biochemical or biomechanical method in DNA damage protection is well required. In the present study, we investigated the effects of mechanical factors, such as deformation of cell nucleus using polydimethylsiloxane (PDMS)-based microfabricated array of micropillars, on UV radiation resistance of DNA in cultured cells. The epithelial-like cells spread normally in the spaces between micropillars and their nuclei showed remarkable deformation and appeared to be “trapped” mechanically on the array of pillars. We found that the UV radiation-induced DNA damage estimated by the fluorescent intensity of the phospho-histone γ-H2AX, was significantly inhibited with the nucleus deformation on the pillars. The result indicates that the inhibition of UV radiation-induced DNA damages might be resulted from structural change of DNA caused by the mechanical stress of the cell nucleus on the micropillars.\",\"PeriodicalId\":51661,\"journal\":{\"name\":\"Journal of Robotics and Mechatronics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2023.p1158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
Deformation and Trapping of Cell Nucleus Using Micropillar Substrates Possibly Affect UV Radiation Resistance of DNA
DNA damage induced by the ultraviolet (UV) light, which affects adversely on genome stability, causes many kinds of diseases. Thus, a biochemical or biomechanical method in DNA damage protection is well required. In the present study, we investigated the effects of mechanical factors, such as deformation of cell nucleus using polydimethylsiloxane (PDMS)-based microfabricated array of micropillars, on UV radiation resistance of DNA in cultured cells. The epithelial-like cells spread normally in the spaces between micropillars and their nuclei showed remarkable deformation and appeared to be “trapped” mechanically on the array of pillars. We found that the UV radiation-induced DNA damage estimated by the fluorescent intensity of the phospho-histone γ-H2AX, was significantly inhibited with the nucleus deformation on the pillars. The result indicates that the inhibition of UV radiation-induced DNA damages might be resulted from structural change of DNA caused by the mechanical stress of the cell nucleus on the micropillars.
期刊介绍:
First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.