{"title":"基于接近传感器的多指机械手局部曲率估计及抓取稳定性预测","authors":"Yosuke Suzuki, Ryoya Yoshida, Tokuo Tsuji, Toshihiro Nishimura, Tetsuyou Watanabe","doi":"10.20965/jrm.2023.p1340","DOIUrl":null,"url":null,"abstract":"This study aims to realize a precision grasp of unknown-shaped objects. Precision grasping requires a detailed understanding of the surface shapes such as concavity and convexity. If an accurate shape model is not given in advance, it must be addressed by sensing. We have proposed a method for recognizing detailed object shapes using proximity sensors equipped on each fingertip of a multi-fingered robot hand. Direct sensing of the object’s surface from the fingertips enables both avoidance of unintended collision during the approach process and recognition of surface profiles for use in planning and executing stable grasping. This paper introduces local surface curvature estimation to improve the accuracy of local surface recognition. We propose practical and accurate models to estimate local curvature based on various characteristic tests on the proximity sensor and to estimate the distance to the nearest point. In actual experiments, it was shown that it was possible to estimate the position of the nearest point with a mean error of less than 2 mm and to predict grasping stability in reasonable real-time for the object shape.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"57 2","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Curvature Estimation and Grasp Stability Prediction Based on Proximity Sensors on a Multi-Fingered Robot Hand\",\"authors\":\"Yosuke Suzuki, Ryoya Yoshida, Tokuo Tsuji, Toshihiro Nishimura, Tetsuyou Watanabe\",\"doi\":\"10.20965/jrm.2023.p1340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to realize a precision grasp of unknown-shaped objects. Precision grasping requires a detailed understanding of the surface shapes such as concavity and convexity. If an accurate shape model is not given in advance, it must be addressed by sensing. We have proposed a method for recognizing detailed object shapes using proximity sensors equipped on each fingertip of a multi-fingered robot hand. Direct sensing of the object’s surface from the fingertips enables both avoidance of unintended collision during the approach process and recognition of surface profiles for use in planning and executing stable grasping. This paper introduces local surface curvature estimation to improve the accuracy of local surface recognition. We propose practical and accurate models to estimate local curvature based on various characteristic tests on the proximity sensor and to estimate the distance to the nearest point. In actual experiments, it was shown that it was possible to estimate the position of the nearest point with a mean error of less than 2 mm and to predict grasping stability in reasonable real-time for the object shape.\",\"PeriodicalId\":51661,\"journal\":{\"name\":\"Journal of Robotics and Mechatronics\",\"volume\":\"57 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2023.p1340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
Local Curvature Estimation and Grasp Stability Prediction Based on Proximity Sensors on a Multi-Fingered Robot Hand
This study aims to realize a precision grasp of unknown-shaped objects. Precision grasping requires a detailed understanding of the surface shapes such as concavity and convexity. If an accurate shape model is not given in advance, it must be addressed by sensing. We have proposed a method for recognizing detailed object shapes using proximity sensors equipped on each fingertip of a multi-fingered robot hand. Direct sensing of the object’s surface from the fingertips enables both avoidance of unintended collision during the approach process and recognition of surface profiles for use in planning and executing stable grasping. This paper introduces local surface curvature estimation to improve the accuracy of local surface recognition. We propose practical and accurate models to estimate local curvature based on various characteristic tests on the proximity sensor and to estimate the distance to the nearest point. In actual experiments, it was shown that it was possible to estimate the position of the nearest point with a mean error of less than 2 mm and to predict grasping stability in reasonable real-time for the object shape.
期刊介绍:
First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.