避恶排列与矩形排列的对比

IF 0.7 4区 数学 Q2 MATHEMATICS
Katherine Tung
{"title":"避恶排列与矩形排列的对比","authors":"Katherine Tung","doi":"10.37236/11841","DOIUrl":null,"url":null,"abstract":"Evil-avoiding permutations, introduced by Kim and Williams in 2022, arise in the study of the inhomogeneous totally asymmetric simple exclusion process. Rectangular permutations, introduced by Chirivì, Fang, and Fourier in 2021, arise in the study of Schubert varieties and Demazure modules. Taking a suggestion of Kim and Williams, we supply an explicit bijection between evil-avoiding and rectangular permutations in $S_n$ that preserves the number of recoils. We encode these classes of permutations as regular languages and construct a length-preserving bijection between words in these regular languages. We extend the bijection to another Wilf-equivalent class of permutations, namely the $1$-almost-increasing permutations, and exhibit a bijection between rectangular permutations and walks of length $2n-2$ in a path of seven vertices starting and ending at the middle vertex.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"27 9","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bijection Between Evil-Avoiding and Rectangular Permutations\",\"authors\":\"Katherine Tung\",\"doi\":\"10.37236/11841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evil-avoiding permutations, introduced by Kim and Williams in 2022, arise in the study of the inhomogeneous totally asymmetric simple exclusion process. Rectangular permutations, introduced by Chirivì, Fang, and Fourier in 2021, arise in the study of Schubert varieties and Demazure modules. Taking a suggestion of Kim and Williams, we supply an explicit bijection between evil-avoiding and rectangular permutations in $S_n$ that preserves the number of recoils. We encode these classes of permutations as regular languages and construct a length-preserving bijection between words in these regular languages. We extend the bijection to another Wilf-equivalent class of permutations, namely the $1$-almost-increasing permutations, and exhibit a bijection between rectangular permutations and walks of length $2n-2$ in a path of seven vertices starting and ending at the middle vertex.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"27 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11841\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11841","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

由Kim和Williams于2022年提出的避免邪恶的排列,是在研究非均匀的完全不对称的简单排斥过程中产生的。矩形排列,由Chirivì、Fang和Fourier于2021年引入,出现在Schubert变种和Demazure模块的研究中。根据Kim和Williams的建议,我们在S_n$中提供了一个保留反冲次数的避恶排列和矩形排列之间的显式对射。我们将这类排列编码为规则语言,并在这些规则语言中的单词之间构造一个保长双射。我们将双射推广到另一类与wilf等价的排列,即$1$-几乎递增的排列,并展示了矩形排列和长度为$2n-2$的行走之间的双射,其路径有7个顶点,从中间顶点开始和结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bijection Between Evil-Avoiding and Rectangular Permutations
Evil-avoiding permutations, introduced by Kim and Williams in 2022, arise in the study of the inhomogeneous totally asymmetric simple exclusion process. Rectangular permutations, introduced by Chirivì, Fang, and Fourier in 2021, arise in the study of Schubert varieties and Demazure modules. Taking a suggestion of Kim and Williams, we supply an explicit bijection between evil-avoiding and rectangular permutations in $S_n$ that preserves the number of recoils. We encode these classes of permutations as regular languages and construct a length-preserving bijection between words in these regular languages. We extend the bijection to another Wilf-equivalent class of permutations, namely the $1$-almost-increasing permutations, and exhibit a bijection between rectangular permutations and walks of length $2n-2$ in a path of seven vertices starting and ending at the middle vertex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信