{"title":"避恶排列与矩形排列的对比","authors":"Katherine Tung","doi":"10.37236/11841","DOIUrl":null,"url":null,"abstract":"Evil-avoiding permutations, introduced by Kim and Williams in 2022, arise in the study of the inhomogeneous totally asymmetric simple exclusion process. Rectangular permutations, introduced by Chirivì, Fang, and Fourier in 2021, arise in the study of Schubert varieties and Demazure modules. Taking a suggestion of Kim and Williams, we supply an explicit bijection between evil-avoiding and rectangular permutations in $S_n$ that preserves the number of recoils. We encode these classes of permutations as regular languages and construct a length-preserving bijection between words in these regular languages. We extend the bijection to another Wilf-equivalent class of permutations, namely the $1$-almost-increasing permutations, and exhibit a bijection between rectangular permutations and walks of length $2n-2$ in a path of seven vertices starting and ending at the middle vertex.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"27 9","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bijection Between Evil-Avoiding and Rectangular Permutations\",\"authors\":\"Katherine Tung\",\"doi\":\"10.37236/11841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evil-avoiding permutations, introduced by Kim and Williams in 2022, arise in the study of the inhomogeneous totally asymmetric simple exclusion process. Rectangular permutations, introduced by Chirivì, Fang, and Fourier in 2021, arise in the study of Schubert varieties and Demazure modules. Taking a suggestion of Kim and Williams, we supply an explicit bijection between evil-avoiding and rectangular permutations in $S_n$ that preserves the number of recoils. We encode these classes of permutations as regular languages and construct a length-preserving bijection between words in these regular languages. We extend the bijection to another Wilf-equivalent class of permutations, namely the $1$-almost-increasing permutations, and exhibit a bijection between rectangular permutations and walks of length $2n-2$ in a path of seven vertices starting and ending at the middle vertex.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"27 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11841\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11841","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Bijection Between Evil-Avoiding and Rectangular Permutations
Evil-avoiding permutations, introduced by Kim and Williams in 2022, arise in the study of the inhomogeneous totally asymmetric simple exclusion process. Rectangular permutations, introduced by Chirivì, Fang, and Fourier in 2021, arise in the study of Schubert varieties and Demazure modules. Taking a suggestion of Kim and Williams, we supply an explicit bijection between evil-avoiding and rectangular permutations in $S_n$ that preserves the number of recoils. We encode these classes of permutations as regular languages and construct a length-preserving bijection between words in these regular languages. We extend the bijection to another Wilf-equivalent class of permutations, namely the $1$-almost-increasing permutations, and exhibit a bijection between rectangular permutations and walks of length $2n-2$ in a path of seven vertices starting and ending at the middle vertex.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.