不包含次要项的图的边缘分隔符

IF 0.7 4区 数学 Q2 MATHEMATICS
Gwenaël Joret, William Lochet, Michał T. Seweryn
{"title":"不包含次要项的图的边缘分隔符","authors":"Gwenaël Joret, William Lochet, Michał T. Seweryn","doi":"10.37236/11744","DOIUrl":null,"url":null,"abstract":"We prove that every $n$-vertex $K_t$-minor-free graph $G$ of maximum degree $\\Delta$ has a set $F$ of $O(t^2(\\log t)^{1/4}\\sqrt{\\Delta n})$ edges such that every component of $G - F$ has at most $n/2$ vertices. This is best possible up to the dependency on $t$ and extends earlier results of Diks, Djidjev, Sýkora, and Vrťo (1993) for planar graphs, and of Sýkora and Vrťo (1993) for bounded-genus graphs. Our result is a consequence of the following more general result: The line graph of $G$ is isomorphic to a subgraph of the strong product $H \\boxtimes K_{\\lfloor p \\rfloor}$ for some graph $H$ with treewidth at most $t-2$ and $p = \\sqrt{(t-3)\\Delta |E(G)|} + \\Delta$.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"27 7","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge Separators for Graphs Excluding a Minor\",\"authors\":\"Gwenaël Joret, William Lochet, Michał T. Seweryn\",\"doi\":\"10.37236/11744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every $n$-vertex $K_t$-minor-free graph $G$ of maximum degree $\\\\Delta$ has a set $F$ of $O(t^2(\\\\log t)^{1/4}\\\\sqrt{\\\\Delta n})$ edges such that every component of $G - F$ has at most $n/2$ vertices. This is best possible up to the dependency on $t$ and extends earlier results of Diks, Djidjev, Sýkora, and Vrťo (1993) for planar graphs, and of Sýkora and Vrťo (1993) for bounded-genus graphs. Our result is a consequence of the following more general result: The line graph of $G$ is isomorphic to a subgraph of the strong product $H \\\\boxtimes K_{\\\\lfloor p \\\\rfloor}$ for some graph $H$ with treewidth at most $t-2$ and $p = \\\\sqrt{(t-3)\\\\Delta |E(G)|} + \\\\Delta$.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"27 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11744\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11744","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了每一个最大度为$\Delta$的$n$ -顶点$K_t$ -无次图$G$都有一个$F$的$O(t^2(\log t)^{1/4}\sqrt{\Delta n})$条边集合,使得$G - F$的每个分量最多有$n/2$个顶点。这是最好的可能,直到对$t$的依赖,并扩展了Diks, Djidjev, Sýkora和Vrťo(1993)对平面图的早期结果,以及Sýkora和Vrťo(1993)对有界属图的早期结果。我们的结果是以下更一般结果的结果:对于树宽最多为$t-2$和$p = \sqrt{(t-3)\Delta |E(G)|} + \Delta$的某些图$H$, $G$的线形图与强积$H \boxtimes K_{\lfloor p \rfloor}$的子图同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge Separators for Graphs Excluding a Minor
We prove that every $n$-vertex $K_t$-minor-free graph $G$ of maximum degree $\Delta$ has a set $F$ of $O(t^2(\log t)^{1/4}\sqrt{\Delta n})$ edges such that every component of $G - F$ has at most $n/2$ vertices. This is best possible up to the dependency on $t$ and extends earlier results of Diks, Djidjev, Sýkora, and Vrťo (1993) for planar graphs, and of Sýkora and Vrťo (1993) for bounded-genus graphs. Our result is a consequence of the following more general result: The line graph of $G$ is isomorphic to a subgraph of the strong product $H \boxtimes K_{\lfloor p \rfloor}$ for some graph $H$ with treewidth at most $t-2$ and $p = \sqrt{(t-3)\Delta |E(G)|} + \Delta$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信