平面图的弱(2,3)分解

IF 0.7 4区 数学 Q2 MATHEMATICS
Ming Han, Xuding Zhu
{"title":"平面图的弱(2,3)分解","authors":"Ming Han, Xuding Zhu","doi":"10.37236/11774","DOIUrl":null,"url":null,"abstract":"This paper introduces the concept of weak $(d,h)$-decomposition of a graph $G$, which is defined as a partition of $E(G)$ into two subsets $E_1,E_2$, such that $E_1$ induces a $d$-degenerate graph $H_1$ and $E_2$ induces a subgraph $H_2$ with $\\alpha(H_1[N_{H_2}(v)]) \\le h$ for any vertex $v$. We prove that each planar graph admits a weak $(2,3)$-decomposition. As a consequence, every planar graph $G$ has a subgraph $H$ such that $G-E(H)$ is $3$-paintable and any proper coloring of $G-E(H)$ is a $3$-defective coloring of $G$. This improves the result in [G. Gutowski, M. Han, T. Krawczyk, and X. Zhu, Defective $3$-paintability of planar graphs, Electron. J. Combin., 25(2):\\#P2.34, 2018] that every planar graph is 3-defective $3$-paintable.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"1 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak (2,3)-Decomposition of Planar Graphs\",\"authors\":\"Ming Han, Xuding Zhu\",\"doi\":\"10.37236/11774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the concept of weak $(d,h)$-decomposition of a graph $G$, which is defined as a partition of $E(G)$ into two subsets $E_1,E_2$, such that $E_1$ induces a $d$-degenerate graph $H_1$ and $E_2$ induces a subgraph $H_2$ with $\\\\alpha(H_1[N_{H_2}(v)]) \\\\le h$ for any vertex $v$. We prove that each planar graph admits a weak $(2,3)$-decomposition. As a consequence, every planar graph $G$ has a subgraph $H$ such that $G-E(H)$ is $3$-paintable and any proper coloring of $G-E(H)$ is a $3$-defective coloring of $G$. This improves the result in [G. Gutowski, M. Han, T. Krawczyk, and X. Zhu, Defective $3$-paintability of planar graphs, Electron. J. Combin., 25(2):\\\\#P2.34, 2018] that every planar graph is 3-defective $3$-paintable.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11774\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11774","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了弱的概念 $(d,h)$图的分解 $G$,定义为对 $E(G)$ 分成两个子集 $E_1,E_2$,这样 $E_1$ 诱导 $d$-简并图 $H_1$ 和 $E_2$ 引出一个子图 $H_2$ 有 $\alpha(H_1[N_{H_2}(v)]) \le h$ 对于任意顶点 $v$. 我们证明了每个平面图都有一个弱图 $(2,3)$-分解。因此,每一个平面图形 $G$ 有一个子图 $H$ 这样 $G-E(H)$ 是 $3$-可油漆和任何适当的着色 $G-E(H)$ 是? $3$-着色缺陷 $G$. 这改进了[G]中的结果。Gutowski, M. Han, T. Krawczyk和X. Zhu,《缺陷》 $3$-平面图形的可绘性,电子。J. Combin。[j] .物理学报,25(2):#P2.34, 2018] $3$-可油漆的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak (2,3)-Decomposition of Planar Graphs
This paper introduces the concept of weak $(d,h)$-decomposition of a graph $G$, which is defined as a partition of $E(G)$ into two subsets $E_1,E_2$, such that $E_1$ induces a $d$-degenerate graph $H_1$ and $E_2$ induces a subgraph $H_2$ with $\alpha(H_1[N_{H_2}(v)]) \le h$ for any vertex $v$. We prove that each planar graph admits a weak $(2,3)$-decomposition. As a consequence, every planar graph $G$ has a subgraph $H$ such that $G-E(H)$ is $3$-paintable and any proper coloring of $G-E(H)$ is a $3$-defective coloring of $G$. This improves the result in [G. Gutowski, M. Han, T. Krawczyk, and X. Zhu, Defective $3$-paintability of planar graphs, Electron. J. Combin., 25(2):\#P2.34, 2018] that every planar graph is 3-defective $3$-paintable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信