极值独立集重构

IF 0.7 4区 数学 Q2 MATHEMATICS
Nicolas Bousquet, Bastien Durain, None Théo Pierron, Stéphan Thomassé
{"title":"极值独立集重构","authors":"Nicolas Bousquet, Bastien Durain, None Théo Pierron, Stéphan Thomassé","doi":"10.37236/11771","DOIUrl":null,"url":null,"abstract":"The independent set reconfiguration problem asks whether one can transform one given independent set of a graph into another, by changing vertices one by one in such a way the intermediate sets remain independent. Extremal problems on independent sets are widely studied: for example, it is well known that an $n$-vertex graph has at most $3^{n/3}$ maximum independent sets (and this is tight). This paper investigates the asymptotic behavior of maximum possible length of a shortest reconfiguration sequence for independent sets of size $k$ among all $n$-vertex graphs. We give a tight bound for $k=2$. We also provide a subquadratic upper bound (using the hypergraph removal lemma) as well as an almost tight construction for $k=3$. We generalize our results for larger values of $k$ by proving an $n^{2\\lfloor k/3 \\rfloor}$ lower bound.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"594 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Independent Set Reconfiguration\",\"authors\":\"Nicolas Bousquet, Bastien Durain, None Théo Pierron, Stéphan Thomassé\",\"doi\":\"10.37236/11771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The independent set reconfiguration problem asks whether one can transform one given independent set of a graph into another, by changing vertices one by one in such a way the intermediate sets remain independent. Extremal problems on independent sets are widely studied: for example, it is well known that an $n$-vertex graph has at most $3^{n/3}$ maximum independent sets (and this is tight). This paper investigates the asymptotic behavior of maximum possible length of a shortest reconfiguration sequence for independent sets of size $k$ among all $n$-vertex graphs. We give a tight bound for $k=2$. We also provide a subquadratic upper bound (using the hypergraph removal lemma) as well as an almost tight construction for $k=3$. We generalize our results for larger values of $k$ by proving an $n^{2\\\\lfloor k/3 \\\\rfloor}$ lower bound.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"594 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11771\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11771","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

独立集重构问题是指是否可以将图中一个给定的独立集转换为另一个给定的独立集,通过逐个改变中间集的顶点,使中间集保持独立。独立集上的极值问题被广泛研究:例如,众所周知,一个$n$顶点的图最多有$3^{n/3}$个最大独立集(这是紧的)。本文研究了在所有$n$顶点图中对于大小为$k$的独立集的最短重构序列的最大可能长度的渐近性。我们给出了k=2的紧界。我们还提供了次二次上界(使用超图去除引理)以及$k=3$的几乎紧构造。我们通过证明$n^{2\lfloor k/3 \rfloor}$的下界,将结果推广到更大的$k$值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal Independent Set Reconfiguration
The independent set reconfiguration problem asks whether one can transform one given independent set of a graph into another, by changing vertices one by one in such a way the intermediate sets remain independent. Extremal problems on independent sets are widely studied: for example, it is well known that an $n$-vertex graph has at most $3^{n/3}$ maximum independent sets (and this is tight). This paper investigates the asymptotic behavior of maximum possible length of a shortest reconfiguration sequence for independent sets of size $k$ among all $n$-vertex graphs. We give a tight bound for $k=2$. We also provide a subquadratic upper bound (using the hypergraph removal lemma) as well as an almost tight construction for $k=3$. We generalize our results for larger values of $k$ by proving an $n^{2\lfloor k/3 \rfloor}$ lower bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信