{"title":"抗酸菌,使人长寿长寿;从抗酸菌缓慢生存、频繁睡眠的机制出发,思考如何开发药物","authors":"Sohkichi Matsumoto","doi":"10.5025/hansen.92.41","DOIUrl":null,"url":null,"abstract":"Research that responds to the desire to live longer and be healthier has led to the discovery of life extention through calorie restriction. Interestingly, this mechanism is conserved from nematodes to mice to primates. Important molecular mechanisms for this longevity effect is the suppression of gene expression and metabolism, including respiration, through upregulation of sirtuin genes and suppression of mTOR signaling.","PeriodicalId":35918,"journal":{"name":"Japanese Journal of Leprosy","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"人の長寿と長生きの抗酸菌;抗酸菌がゆっくりと生きて頻繁に眠るしくみから、薬剤開発への展開を考える\",\"authors\":\"Sohkichi Matsumoto\",\"doi\":\"10.5025/hansen.92.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research that responds to the desire to live longer and be healthier has led to the discovery of life extention through calorie restriction. Interestingly, this mechanism is conserved from nematodes to mice to primates. Important molecular mechanisms for this longevity effect is the suppression of gene expression and metabolism, including respiration, through upregulation of sirtuin genes and suppression of mTOR signaling.\",\"PeriodicalId\":35918,\"journal\":{\"name\":\"Japanese Journal of Leprosy\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Leprosy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5025/hansen.92.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Leprosy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5025/hansen.92.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Research that responds to the desire to live longer and be healthier has led to the discovery of life extention through calorie restriction. Interestingly, this mechanism is conserved from nematodes to mice to primates. Important molecular mechanisms for this longevity effect is the suppression of gene expression and metabolism, including respiration, through upregulation of sirtuin genes and suppression of mTOR signaling.