Iwona Chlebicka, Flavia Giannetti, Anna Zatorska-Goldstein
{"title":"具有Orlicz增长和测量数据的椭圆型问题解的Wolff势和局部行为","authors":"Iwona Chlebicka, Flavia Giannetti, Anna Zatorska-Goldstein","doi":"10.1515/acv-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract We establish pointwise bounds expressed in terms of a nonlinear potential of a generalized Wolff type for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒜</m:mi> </m:math> {{\\mathcal{A}}} -superharmonic functions with nonlinear operator <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">𝒜</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>×</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mo>→</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:mrow> </m:math> {{\\mathcal{A}}:\\Omega\\times{\\mathbb{R}^{n}}\\to{\\mathbb{R}^{n}}} having measurable dependence on the spacial variable and Orlicz growth with respect to the last variable. The result is sharp as the same potential controls estimates from above and from below. Applying it we provide a bunch of precise regularity results including continuity and Hölder continuity for solutions to problems involving measures that satisfy conditions expressed in the natural scales. Finally, we give a variant of Hedberg–Wolff theorem on characterization of the dual of the Orlicz space.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"98 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wolff potentials and local behavior of solutions to elliptic problems with Orlicz growth and measure data\",\"authors\":\"Iwona Chlebicka, Flavia Giannetti, Anna Zatorska-Goldstein\",\"doi\":\"10.1515/acv-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We establish pointwise bounds expressed in terms of a nonlinear potential of a generalized Wolff type for <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒜</m:mi> </m:math> {{\\\\mathcal{A}}} -superharmonic functions with nonlinear operator <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"script\\\">𝒜</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>×</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> <m:mo>→</m:mo> <m:msup> <m:mi>ℝ</m:mi> <m:mi>n</m:mi> </m:msup> </m:mrow> </m:mrow> </m:math> {{\\\\mathcal{A}}:\\\\Omega\\\\times{\\\\mathbb{R}^{n}}\\\\to{\\\\mathbb{R}^{n}}} having measurable dependence on the spacial variable and Orlicz growth with respect to the last variable. The result is sharp as the same potential controls estimates from above and from below. Applying it we provide a bunch of precise regularity results including continuity and Hölder continuity for solutions to problems involving measures that satisfy conditions expressed in the natural scales. Finally, we give a variant of Hedberg–Wolff theorem on characterization of the dual of the Orlicz space.\",\"PeriodicalId\":49276,\"journal\":{\"name\":\"Advances in Calculus of Variations\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Calculus of Variations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2023-0005\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/acv-2023-0005","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Wolff potentials and local behavior of solutions to elliptic problems with Orlicz growth and measure data
Abstract We establish pointwise bounds expressed in terms of a nonlinear potential of a generalized Wolff type for 𝒜 {{\mathcal{A}}} -superharmonic functions with nonlinear operator 𝒜:Ω×ℝn→ℝn {{\mathcal{A}}:\Omega\times{\mathbb{R}^{n}}\to{\mathbb{R}^{n}}} having measurable dependence on the spacial variable and Orlicz growth with respect to the last variable. The result is sharp as the same potential controls estimates from above and from below. Applying it we provide a bunch of precise regularity results including continuity and Hölder continuity for solutions to problems involving measures that satisfy conditions expressed in the natural scales. Finally, we give a variant of Hedberg–Wolff theorem on characterization of the dual of the Orlicz space.
期刊介绍:
Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.