Antonin Chambolle, Daniele de Gennaro, Massimiliano Morini
{"title":"各向异性和非均匀平均曲率流的最小运动","authors":"Antonin Chambolle, Daniele de Gennaro, Massimiliano Morini","doi":"10.1515/acv-2022-0102","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we address anisotropic and inhomogeneous mean curvature flows with forcing and mobility, and show that the minimizing movements scheme converges to level set/viscosity solutions and to distributional solutions à la Luckhaus–Sturzenhecker to such flows, the latter result holding in low dimension and conditionally to the convergence of the energies. By doing so we generalize recent works concerning the evolution by mean curvature by removing the hypothesis of translation invariance, which in the classical theory allows one to simplify many arguments.","PeriodicalId":49276,"journal":{"name":"Advances in Calculus of Variations","volume":"98 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimizing movements for anisotropic and inhomogeneous mean curvature flows\",\"authors\":\"Antonin Chambolle, Daniele de Gennaro, Massimiliano Morini\",\"doi\":\"10.1515/acv-2022-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we address anisotropic and inhomogeneous mean curvature flows with forcing and mobility, and show that the minimizing movements scheme converges to level set/viscosity solutions and to distributional solutions à la Luckhaus–Sturzenhecker to such flows, the latter result holding in low dimension and conditionally to the convergence of the energies. By doing so we generalize recent works concerning the evolution by mean curvature by removing the hypothesis of translation invariance, which in the classical theory allows one to simplify many arguments.\",\"PeriodicalId\":49276,\"journal\":{\"name\":\"Advances in Calculus of Variations\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Calculus of Variations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0102\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Calculus of Variations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/acv-2022-0102","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Minimizing movements for anisotropic and inhomogeneous mean curvature flows
Abstract In this paper we address anisotropic and inhomogeneous mean curvature flows with forcing and mobility, and show that the minimizing movements scheme converges to level set/viscosity solutions and to distributional solutions à la Luckhaus–Sturzenhecker to such flows, the latter result holding in low dimension and conditionally to the convergence of the energies. By doing so we generalize recent works concerning the evolution by mean curvature by removing the hypothesis of translation invariance, which in the classical theory allows one to simplify many arguments.
期刊介绍:
Advances in Calculus of Variations publishes high quality original research focusing on that part of calculus of variation and related applications which combines tools and methods from partial differential equations with geometrical techniques.