增钾放线菌atacamensis链霉菌(KSA16)的分离、筛选及分子特性研究

Sreeja Bopin, Kalavati Prajapati
{"title":"增钾放线菌atacamensis链霉菌(KSA16)的分离、筛选及分子特性研究","authors":"Sreeja Bopin, Kalavati Prajapati","doi":"10.13005/bbra/3151","DOIUrl":null,"url":null,"abstract":"The most prevalent nutrient is potassium (K), which makes up around 2.5% of the lithosphere. Approximately 90–98% of soil mineral K is present in the forms of feldspar (orthoclase and microcline) and mica (biotite and muscovite). Particularly in smallholder agriculture, replenishing potassium remains difficult because of its dependence on fertilizer. Potassium shortage in soil can be addressed by the use of soluble mineral potassium fertilizers; however, farmers have been constrained by the high price and restricted availability of these products. The present study aims to identify and select soil Actinomycetes from the soils used in the ceramic industry that may dilute potassium. Since feldspar, an insoluble potassium source, is used by most ceramic manufacturers as a raw ingredient, we gathered samples from these businesses. In the Gujarati cities of Morbi, Meshana, and Kadi, ceramic firms were contacted for a total of fifteen samples. 22 Actinomycetes isolates were chosen for further investigation after primary and secondary screening and inoculation onto Aleksandrov agar supplemented with 0.5 percent potassium aluminium silicate. The 16S rRNA sequence of strain KSA 16 confirmed that it was Streptomyces atacamensis. In a liquid solution, KSA 16 was the most effective in dissolving the insoluble potassium source, feldspar.","PeriodicalId":9032,"journal":{"name":"Biosciences, Biotechnology Research Asia","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation, Screening and Molecular Characterization of Potassium Solubilizing Actinomycete Streptomyces atacamensis (KSA16)\",\"authors\":\"Sreeja Bopin, Kalavati Prajapati\",\"doi\":\"10.13005/bbra/3151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most prevalent nutrient is potassium (K), which makes up around 2.5% of the lithosphere. Approximately 90–98% of soil mineral K is present in the forms of feldspar (orthoclase and microcline) and mica (biotite and muscovite). Particularly in smallholder agriculture, replenishing potassium remains difficult because of its dependence on fertilizer. Potassium shortage in soil can be addressed by the use of soluble mineral potassium fertilizers; however, farmers have been constrained by the high price and restricted availability of these products. The present study aims to identify and select soil Actinomycetes from the soils used in the ceramic industry that may dilute potassium. Since feldspar, an insoluble potassium source, is used by most ceramic manufacturers as a raw ingredient, we gathered samples from these businesses. In the Gujarati cities of Morbi, Meshana, and Kadi, ceramic firms were contacted for a total of fifteen samples. 22 Actinomycetes isolates were chosen for further investigation after primary and secondary screening and inoculation onto Aleksandrov agar supplemented with 0.5 percent potassium aluminium silicate. The 16S rRNA sequence of strain KSA 16 confirmed that it was Streptomyces atacamensis. In a liquid solution, KSA 16 was the most effective in dissolving the insoluble potassium source, feldspar.\",\"PeriodicalId\":9032,\"journal\":{\"name\":\"Biosciences, Biotechnology Research Asia\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosciences, Biotechnology Research Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/bbra/3151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosciences, Biotechnology Research Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/bbra/3151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最普遍的营养物质是钾(K),占岩石圈的2.5%左右。大约90-98%的土壤矿物钾以长石(长石和微斜长石)和云母(黑云母和白云母)的形式存在。特别是在小农农业中,由于对肥料的依赖,补充钾仍然很困难。利用可溶性矿质钾肥可解决土壤缺钾问题;然而,农民受到这些产品的高价格和有限供应的限制。本研究旨在从陶瓷工业用土壤中鉴定和筛选可能稀释钾的土壤放线菌。由于长石是一种不溶性钾源,被大多数陶瓷制造商用作原料,我们从这些企业收集了样本。在古吉拉特邦的莫尔比、梅萨纳和卡迪等城市,陶瓷公司共获得了15个样本。对22株放线菌进行一次和二次筛选,接种于添加0.5%硅酸铝钾的Aleksandrov琼脂上。菌株KSA 16的16S rRNA序列证实其为阿塔卡camstreptomyces atacamensis。在液体溶液中,KSA 16对不溶性钾源长石的溶解效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolation, Screening and Molecular Characterization of Potassium Solubilizing Actinomycete Streptomyces atacamensis (KSA16)
The most prevalent nutrient is potassium (K), which makes up around 2.5% of the lithosphere. Approximately 90–98% of soil mineral K is present in the forms of feldspar (orthoclase and microcline) and mica (biotite and muscovite). Particularly in smallholder agriculture, replenishing potassium remains difficult because of its dependence on fertilizer. Potassium shortage in soil can be addressed by the use of soluble mineral potassium fertilizers; however, farmers have been constrained by the high price and restricted availability of these products. The present study aims to identify and select soil Actinomycetes from the soils used in the ceramic industry that may dilute potassium. Since feldspar, an insoluble potassium source, is used by most ceramic manufacturers as a raw ingredient, we gathered samples from these businesses. In the Gujarati cities of Morbi, Meshana, and Kadi, ceramic firms were contacted for a total of fifteen samples. 22 Actinomycetes isolates were chosen for further investigation after primary and secondary screening and inoculation onto Aleksandrov agar supplemented with 0.5 percent potassium aluminium silicate. The 16S rRNA sequence of strain KSA 16 confirmed that it was Streptomyces atacamensis. In a liquid solution, KSA 16 was the most effective in dissolving the insoluble potassium source, feldspar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信