用于高温传感应用的AlScN-on-SiC膜片多模微机械谐振器

Wen Sui, Haoran Wang, Jaesung Lee, Afzaal Qamar, Mina Rais-Zadeh, Philip X.-L. Feng
{"title":"用于高温传感应用的AlScN-on-SiC膜片多模微机械谐振器","authors":"Wen Sui, Haoran Wang, Jaesung Lee, Afzaal Qamar, Mina Rais-Zadeh, Philip X.-L. Feng","doi":"10.4071/001c.89964","DOIUrl":null,"url":null,"abstract":"We demonstrate circular diaphragm multimode micromechanical resonators made of heterostructure thin film of aluminum scandium nitride (AlScN) sputtered on cubic silicon carbide (3C-SiC). We systematically characterize the multimode resonators from room temperature up to 600ºC high-temperature environment. We observe clear consistency in resonances measured in heating up and cooling down processes, validating that the AlScN/SiC diaphragm resonators can operate robustly in high-temperature environment up to 600°C without observable degradation. Raman spectroscopy results indicate that the turning points of the peak positions of the longitudinal optical (LO) phonon modes of both 3C-SiC and AlScN occur in almost the same temperature region where the turning point of temperature coefficient of resonance frequency (TCf) is observed. We calibrate the device temperature by measuring Raman peak of the silicon (Si) substrate of the chip, yielding a crystal lattice temperature of 410ºC at the heater setting temperature being 600ºC. The heating efficiency can be improved by clamping the chip using a clip or jig with lower thermal conductivity.","PeriodicalId":500457,"journal":{"name":"IMAPS symposia and conferences","volume":"70 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AlScN-on-SiC Diaphragm Multimode Micromechanical Resonators for High-Temperature Sensing Applications\",\"authors\":\"Wen Sui, Haoran Wang, Jaesung Lee, Afzaal Qamar, Mina Rais-Zadeh, Philip X.-L. Feng\",\"doi\":\"10.4071/001c.89964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate circular diaphragm multimode micromechanical resonators made of heterostructure thin film of aluminum scandium nitride (AlScN) sputtered on cubic silicon carbide (3C-SiC). We systematically characterize the multimode resonators from room temperature up to 600ºC high-temperature environment. We observe clear consistency in resonances measured in heating up and cooling down processes, validating that the AlScN/SiC diaphragm resonators can operate robustly in high-temperature environment up to 600°C without observable degradation. Raman spectroscopy results indicate that the turning points of the peak positions of the longitudinal optical (LO) phonon modes of both 3C-SiC and AlScN occur in almost the same temperature region where the turning point of temperature coefficient of resonance frequency (TCf) is observed. We calibrate the device temperature by measuring Raman peak of the silicon (Si) substrate of the chip, yielding a crystal lattice temperature of 410ºC at the heater setting temperature being 600ºC. The heating efficiency can be improved by clamping the chip using a clip or jig with lower thermal conductivity.\",\"PeriodicalId\":500457,\"journal\":{\"name\":\"IMAPS symposia and conferences\",\"volume\":\"70 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMAPS symposia and conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/001c.89964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMAPS symposia and conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/001c.89964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在立方碳化硅(3C-SiC)上溅射制备了一种由氮化铝钪(AlScN)异质薄膜制成的圆膜片多模微机械谐振器。我们在室温到600℃的高温环境下对多模谐振器进行了系统的表征。我们观察到在加热和冷却过程中测量的共振具有明显的一致性,验证了AlScN/SiC隔膜谐振器可以在高达600°C的高温环境中稳定运行,而不会出现明显的退化。拉曼光谱结果表明,3C-SiC和AlScN的纵向光学声子模式的峰位拐点出现在谐振频率温度系数(TCf)拐点的几乎相同的温度区域。我们通过测量芯片硅(Si)衬底的拉曼峰来校准器件温度,在加热器设置温度为600℃时,晶格温度为410℃。通过使用导热系数较低的夹子或夹具夹紧芯片,可以提高加热效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AlScN-on-SiC Diaphragm Multimode Micromechanical Resonators for High-Temperature Sensing Applications
We demonstrate circular diaphragm multimode micromechanical resonators made of heterostructure thin film of aluminum scandium nitride (AlScN) sputtered on cubic silicon carbide (3C-SiC). We systematically characterize the multimode resonators from room temperature up to 600ºC high-temperature environment. We observe clear consistency in resonances measured in heating up and cooling down processes, validating that the AlScN/SiC diaphragm resonators can operate robustly in high-temperature environment up to 600°C without observable degradation. Raman spectroscopy results indicate that the turning points of the peak positions of the longitudinal optical (LO) phonon modes of both 3C-SiC and AlScN occur in almost the same temperature region where the turning point of temperature coefficient of resonance frequency (TCf) is observed. We calibrate the device temperature by measuring Raman peak of the silicon (Si) substrate of the chip, yielding a crystal lattice temperature of 410ºC at the heater setting temperature being 600ºC. The heating efficiency can be improved by clamping the chip using a clip or jig with lower thermal conductivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信