南极土壤细菌群落结构、代谢适应及其对非生物因子的功能相互作用

IF 0.9 4区 地球科学 Q4 ECOLOGY
Kunal Jani, Anoop Mahajan, Swapnil Kajale, Aditee Ashar, Avinash Sharma
{"title":"南极土壤细菌群落结构、代谢适应及其对非生物因子的功能相互作用","authors":"Kunal Jani, Anoop Mahajan, Swapnil Kajale, Aditee Ashar, Avinash Sharma","doi":"10.24425/ppr.2021.138588","DOIUrl":null,"url":null,"abstract":": Antarctica features one of the most ancient, largest glacier reserves and the most pristine environment left on the earth. However, in the last few decades disturbances due to industrialization and release of greenhouse gases have led to serious consequences such as melting of polar ice sheets, changing atmospheric chemistry and ozone depletion. Here, we use high-throughput sequencing to understand the impact of subtle changes in environmental parameters on bacterial communities. We observed dominance of Cyanobacteria (41.93%) followed by Bacteroidetes (14.8%), Acidobacteria (13.35%), Proteobacteria (9.67%), Actinobacteria (7.79%), Firmicutes (3.46%) among all the samples collected every alternate day for 20 days. Additionally, metagenomic imputations revealed a higher abundance of gene families associated with DNA repair and carotenoid biosynthesis enabling bacterial communities to resist and function under the high UV radiations. We further observed bacterial communities are dependent on the single carbon metabolism as a strategy for nutrient uptake in such nutrient deprived conditions.","PeriodicalId":49682,"journal":{"name":"Polish Polar Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Soil bacterial community structure, metabolic adaptations and their functional interactions to abiotic factors in Antarctica\",\"authors\":\"Kunal Jani, Anoop Mahajan, Swapnil Kajale, Aditee Ashar, Avinash Sharma\",\"doi\":\"10.24425/ppr.2021.138588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Antarctica features one of the most ancient, largest glacier reserves and the most pristine environment left on the earth. However, in the last few decades disturbances due to industrialization and release of greenhouse gases have led to serious consequences such as melting of polar ice sheets, changing atmospheric chemistry and ozone depletion. Here, we use high-throughput sequencing to understand the impact of subtle changes in environmental parameters on bacterial communities. We observed dominance of Cyanobacteria (41.93%) followed by Bacteroidetes (14.8%), Acidobacteria (13.35%), Proteobacteria (9.67%), Actinobacteria (7.79%), Firmicutes (3.46%) among all the samples collected every alternate day for 20 days. Additionally, metagenomic imputations revealed a higher abundance of gene families associated with DNA repair and carotenoid biosynthesis enabling bacterial communities to resist and function under the high UV radiations. We further observed bacterial communities are dependent on the single carbon metabolism as a strategy for nutrient uptake in such nutrient deprived conditions.\",\"PeriodicalId\":49682,\"journal\":{\"name\":\"Polish Polar Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Polar Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ppr.2021.138588\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Polar Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ppr.2021.138588","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soil bacterial community structure, metabolic adaptations and their functional interactions to abiotic factors in Antarctica
: Antarctica features one of the most ancient, largest glacier reserves and the most pristine environment left on the earth. However, in the last few decades disturbances due to industrialization and release of greenhouse gases have led to serious consequences such as melting of polar ice sheets, changing atmospheric chemistry and ozone depletion. Here, we use high-throughput sequencing to understand the impact of subtle changes in environmental parameters on bacterial communities. We observed dominance of Cyanobacteria (41.93%) followed by Bacteroidetes (14.8%), Acidobacteria (13.35%), Proteobacteria (9.67%), Actinobacteria (7.79%), Firmicutes (3.46%) among all the samples collected every alternate day for 20 days. Additionally, metagenomic imputations revealed a higher abundance of gene families associated with DNA repair and carotenoid biosynthesis enabling bacterial communities to resist and function under the high UV radiations. We further observed bacterial communities are dependent on the single carbon metabolism as a strategy for nutrient uptake in such nutrient deprived conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Polar Research
Polish Polar Research ECOLOGY-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
2.00
自引率
7.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: The quarterly Polish Polar Research edited by the Committee on Polar Research of the Polish Academy of Sciences is an international journal publishing original research articles presenting the results of studies carried out in polar regions. All papers are peer-reviewed and published in English. The Editorial Advisory Board includes renowned scientist from Poland and from abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信