沿子流形的m-次调和函数的长数

IF 1.1 2区 数学 Q1 MATHEMATICS
Jianchun Chu, Nicholas McCleerey
{"title":"沿子流形的m-次调和函数的长数","authors":"Jianchun Chu, Nicholas McCleerey","doi":"10.1017/s1474748023000385","DOIUrl":null,"url":null,"abstract":"Abstract We study the possible singularities of an m -subharmonic function $\\varphi $ along a complex submanifold V of a compact Kähler manifold, finding a maximal rate of growth for $\\varphi $ which depends only on m and k , the codimension of V . When $k < m$ , we show that $\\varphi $ has at worst log poles along V , and that the strength of these poles is moreover constant along V . This can be thought of as an analogue of Siu’s theorem.","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"103 7","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LELONG NUMBERS OF <i>m</i>-SUBHARMONIC FUNCTIONS ALONG SUBMANIFOLDS\",\"authors\":\"Jianchun Chu, Nicholas McCleerey\",\"doi\":\"10.1017/s1474748023000385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the possible singularities of an m -subharmonic function $\\\\varphi $ along a complex submanifold V of a compact Kähler manifold, finding a maximal rate of growth for $\\\\varphi $ which depends only on m and k , the codimension of V . When $k < m$ , we show that $\\\\varphi $ has at worst log poles along V , and that the strength of these poles is moreover constant along V . This can be thought of as an analogue of Siu’s theorem.\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"103 7\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748023000385\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1474748023000385","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了紧化Kähler流形的复子流形V上的m -次调和函数$\varphi $的可能奇点,找到了$\varphi $仅依赖于V的余维m和k的最大增长率。当$k <m$,我们证明$\varphi $在最坏的情况下沿V有对数极点,而且这些极点的强度沿V是恒定的。这可以看作是Siu定理的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LELONG NUMBERS OF m-SUBHARMONIC FUNCTIONS ALONG SUBMANIFOLDS
Abstract We study the possible singularities of an m -subharmonic function $\varphi $ along a complex submanifold V of a compact Kähler manifold, finding a maximal rate of growth for $\varphi $ which depends only on m and k , the codimension of V . When $k < m$ , we show that $\varphi $ has at worst log poles along V , and that the strength of these poles is moreover constant along V . This can be thought of as an analogue of Siu’s theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信