{"title":"本科课程编程教学的主动学习方法:系统映射研究","authors":"Ivanilse Calderon, Williamson Silva, Eduardo Feitosa","doi":"10.15388/infedu.2024.11","DOIUrl":null,"url":null,"abstract":"Teaching programming is a complex process requiring learning to develop different skills. To minimize the challenges faced in the classroom, instructors have been adopting active methodologies in teaching computer programming. This article presents a Systematic Mapping Study (SMS) to identify and categorize the types of methodologies that instructors have adopted for teaching programming. We evaluated 3,850 papers published from 2000 to 2022. The results provide an overview and comprehensive view of active learning methodologies employed in teaching programming, technologies, programming languages, and the metrics used to observe student learning in this context. In the results, we identified thirty-seven different ALMs adopted by instructors. We realized that seventeen publications describe teaching approaches that combine more than one ALM, and the most reported methodologies in the studies are Flipped Classroom and Gamification-Based Learning. In addition, we are proposing an educational and collaborative tool called CollabProg, which summarizes the primary active learning methodologies identified in this SMS. CollabProg will assist instructors in selecting appropriate ALMs that align with their pedagogical requirements and teaching programming context.","PeriodicalId":45270,"journal":{"name":"Informatics in Education","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Learning Methodologies for Teaching Programming in Undergraduate Courses: A Systematic Mapping Study\",\"authors\":\"Ivanilse Calderon, Williamson Silva, Eduardo Feitosa\",\"doi\":\"10.15388/infedu.2024.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Teaching programming is a complex process requiring learning to develop different skills. To minimize the challenges faced in the classroom, instructors have been adopting active methodologies in teaching computer programming. This article presents a Systematic Mapping Study (SMS) to identify and categorize the types of methodologies that instructors have adopted for teaching programming. We evaluated 3,850 papers published from 2000 to 2022. The results provide an overview and comprehensive view of active learning methodologies employed in teaching programming, technologies, programming languages, and the metrics used to observe student learning in this context. In the results, we identified thirty-seven different ALMs adopted by instructors. We realized that seventeen publications describe teaching approaches that combine more than one ALM, and the most reported methodologies in the studies are Flipped Classroom and Gamification-Based Learning. In addition, we are proposing an educational and collaborative tool called CollabProg, which summarizes the primary active learning methodologies identified in this SMS. CollabProg will assist instructors in selecting appropriate ALMs that align with their pedagogical requirements and teaching programming context.\",\"PeriodicalId\":45270,\"journal\":{\"name\":\"Informatics in Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15388/infedu.2024.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/infedu.2024.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Active Learning Methodologies for Teaching Programming in Undergraduate Courses: A Systematic Mapping Study
Teaching programming is a complex process requiring learning to develop different skills. To minimize the challenges faced in the classroom, instructors have been adopting active methodologies in teaching computer programming. This article presents a Systematic Mapping Study (SMS) to identify and categorize the types of methodologies that instructors have adopted for teaching programming. We evaluated 3,850 papers published from 2000 to 2022. The results provide an overview and comprehensive view of active learning methodologies employed in teaching programming, technologies, programming languages, and the metrics used to observe student learning in this context. In the results, we identified thirty-seven different ALMs adopted by instructors. We realized that seventeen publications describe teaching approaches that combine more than one ALM, and the most reported methodologies in the studies are Flipped Classroom and Gamification-Based Learning. In addition, we are proposing an educational and collaborative tool called CollabProg, which summarizes the primary active learning methodologies identified in this SMS. CollabProg will assist instructors in selecting appropriate ALMs that align with their pedagogical requirements and teaching programming context.
期刊介绍:
INFORMATICS IN EDUCATION publishes original articles about theoretical, experimental and methodological studies in the fields of informatics (computer science) education and educational applications of information technology, ranging from primary to tertiary education. Multidisciplinary research studies that enhance our understanding of how theoretical and technological innovations translate into educational practice are most welcome. We are particularly interested in work at boundaries, both the boundaries of informatics and of education. The topics covered by INFORMATICS IN EDUCATION will range across diverse aspects of informatics (computer science) education research including: empirical studies, including composing different approaches to teach various subjects, studying availability of various concepts at a given age, measuring knowledge transfer and skills developed, addressing gender issues, etc. statistical research on big data related to informatics (computer science) activities including e.g. research on assessment, online teaching, competitions, etc. educational engineering focusing mainly on developing high quality original teaching sequences of different informatics (computer science) topics that offer new, successful ways for knowledge transfer and development of computational thinking machine learning of student''s behavior including the use of information technology to observe students in the learning process and discovering clusters of their working design and evaluation of educational tools that apply information technology in novel ways.