原位生长氢氧化铁镍作为锌空气电池阴极催化剂,提高生物炭双功能催化活性

IF 13.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Biochar Pub Date : 2023-09-27 DOI:10.1007/s42773-023-00259-1
Pengxiang Zhang, Kang Sun, Yanyan Liu, Benji Zhou, Shuqi Li, Jingjing Zhou, Ao Wang, Lixia Xie, Baojun Li, Jianchun Jiang
{"title":"原位生长氢氧化铁镍作为锌空气电池阴极催化剂,提高生物炭双功能催化活性","authors":"Pengxiang Zhang, Kang Sun, Yanyan Liu, Benji Zhou, Shuqi Li, Jingjing Zhou, Ao Wang, Lixia Xie, Baojun Li, Jianchun Jiang","doi":"10.1007/s42773-023-00259-1","DOIUrl":null,"url":null,"abstract":"Abstract Expanding the application scenarios of wood-derived biochar guided by the conversion of traditional energy to new energy shows great promise as a field. As thrilling energy conversion apparatus, zinc-air batteries (ZABs) require cathode catalysts with high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities and stability. Herein, two-dimensional nickel-iron hydroxide nanosheets were creatively assembled in N-doped wood-derived biochar (NiFe-LDH@NC) by an in-situ growth method. The categorized porous organization in wood-derived biochar facilitates the rapid seepage of electrolytes and rapid diffusion of reaction gases. The unique interfacial structure of biochar and NiFe-LDH accelerates electron transfer during oxygen electrocatalysis, and endows NiFe-LDH@NC with first-class catalytic activity and durability for ORR and OER. The ZAB derived from NiFe-LDH@NC showed elevated discharge productivity and cycle endurance, making it promising for viable applications. This work provided a convenient way for the conversion of wood-derived biochar to high-value added electrocatalysts. Graphical Abstract","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"45 1","pages":"0"},"PeriodicalIF":13.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving bifunctional catalytic activity of biochar via in-situ growth of nickel-iron hydroxide as cathodic catalyst for zinc-air batteries\",\"authors\":\"Pengxiang Zhang, Kang Sun, Yanyan Liu, Benji Zhou, Shuqi Li, Jingjing Zhou, Ao Wang, Lixia Xie, Baojun Li, Jianchun Jiang\",\"doi\":\"10.1007/s42773-023-00259-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Expanding the application scenarios of wood-derived biochar guided by the conversion of traditional energy to new energy shows great promise as a field. As thrilling energy conversion apparatus, zinc-air batteries (ZABs) require cathode catalysts with high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities and stability. Herein, two-dimensional nickel-iron hydroxide nanosheets were creatively assembled in N-doped wood-derived biochar (NiFe-LDH@NC) by an in-situ growth method. The categorized porous organization in wood-derived biochar facilitates the rapid seepage of electrolytes and rapid diffusion of reaction gases. The unique interfacial structure of biochar and NiFe-LDH accelerates electron transfer during oxygen electrocatalysis, and endows NiFe-LDH@NC with first-class catalytic activity and durability for ORR and OER. The ZAB derived from NiFe-LDH@NC showed elevated discharge productivity and cycle endurance, making it promising for viable applications. This work provided a convenient way for the conversion of wood-derived biochar to high-value added electrocatalysts. Graphical Abstract\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-023-00259-1\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42773-023-00259-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

以传统能源向新能源转化为导向,拓展木质生物炭的应用场景,是一个大有发展前景的领域。锌空气电池(ZABs)作为一种令人兴奋的能量转换装置,需要具有高氧还原反应(ORR)和氧演化反应(OER)活性和稳定性的阴极催化剂。本文采用原位生长的方法,在掺杂n的木材衍生生物炭(NiFe-LDH@NC)中创造性地组装了二维氢氧化铁镍纳米片。木质生物炭的多孔组织有利于电解液的快速渗透和反应气体的快速扩散。生物炭与NiFe-LDH独特的界面结构加速了氧电催化过程中的电子转移,使NiFe-LDH@NC对ORR和OER具有一流的催化活性和耐久性。来自NiFe-LDH@NC的ZAB显示出更高的放电生产率和循环耐久性,使其具有可行的应用前景。本研究为木质生物炭转化为高附加值电催化剂提供了便利途径。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving bifunctional catalytic activity of biochar via in-situ growth of nickel-iron hydroxide as cathodic catalyst for zinc-air batteries

Improving bifunctional catalytic activity of biochar via in-situ growth of nickel-iron hydroxide as cathodic catalyst for zinc-air batteries
Abstract Expanding the application scenarios of wood-derived biochar guided by the conversion of traditional energy to new energy shows great promise as a field. As thrilling energy conversion apparatus, zinc-air batteries (ZABs) require cathode catalysts with high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities and stability. Herein, two-dimensional nickel-iron hydroxide nanosheets were creatively assembled in N-doped wood-derived biochar (NiFe-LDH@NC) by an in-situ growth method. The categorized porous organization in wood-derived biochar facilitates the rapid seepage of electrolytes and rapid diffusion of reaction gases. The unique interfacial structure of biochar and NiFe-LDH accelerates electron transfer during oxygen electrocatalysis, and endows NiFe-LDH@NC with first-class catalytic activity and durability for ORR and OER. The ZAB derived from NiFe-LDH@NC showed elevated discharge productivity and cycle endurance, making it promising for viable applications. This work provided a convenient way for the conversion of wood-derived biochar to high-value added electrocatalysts. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochar
Biochar Multiple-
CiteScore
18.60
自引率
10.20%
发文量
61
期刊介绍: Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信