Abdelrahman M. Askar, Paula Palacios, Francisco Pasadas, Mohamed Saeed, Mohammad Reza Mohammadzadeh, Renato Negra, Michael M. Adachi
{"title":"射频应用中的二维碲基二极管","authors":"Abdelrahman M. Askar, Paula Palacios, Francisco Pasadas, Mohamed Saeed, Mohammad Reza Mohammadzadeh, Renato Negra, Michael M. Adachi","doi":"10.1038/s41699-023-00433-w","DOIUrl":null,"url":null,"abstract":"The research of two-dimensional (2D) Tellurium (Te) or tellurene is thriving to address current challenges in emerging thin-film electronic and optoelectronic devices. However, the study of 2D-Te-based devices for high-frequency applications is still lacking in the literature. This work presents a comprehensive study of two types of radio frequency (RF) diodes based on 2D-Te flakes and exploits their distinct properties in two RF applications. First, a metal-insulator-semiconductor (MIS) structure is employed as a nonlinear device in a passive RF mixer, where the achieved conversion loss at 2.5 GHz and 5 GHz is as low as 24 dB and 29 dB, respectively. Then, a metal-semiconductor (MS) diode is tested as a zero-bias millimeter-wave power detector and reaches an outstanding linear-in-dB dynamic range over 40 dB, while having voltage responsivities as high as 257 V ⋅ W−1 at 1 GHz (up to 1 V detected output voltage) and 47 V ⋅ W−1 at 2.5 GHz (up to 0.26 V detected output voltage). These results show superior performance compared to other 2D material-based devices in a much more mature technological phase. Thus, the authors believe that this work demonstrates the potential of 2D-Te as a promising material for devices in emerging high-frequency electronics.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-11"},"PeriodicalIF":9.1000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-023-00433-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional tellurium-based diodes for RF applications\",\"authors\":\"Abdelrahman M. Askar, Paula Palacios, Francisco Pasadas, Mohamed Saeed, Mohammad Reza Mohammadzadeh, Renato Negra, Michael M. Adachi\",\"doi\":\"10.1038/s41699-023-00433-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research of two-dimensional (2D) Tellurium (Te) or tellurene is thriving to address current challenges in emerging thin-film electronic and optoelectronic devices. However, the study of 2D-Te-based devices for high-frequency applications is still lacking in the literature. This work presents a comprehensive study of two types of radio frequency (RF) diodes based on 2D-Te flakes and exploits their distinct properties in two RF applications. First, a metal-insulator-semiconductor (MIS) structure is employed as a nonlinear device in a passive RF mixer, where the achieved conversion loss at 2.5 GHz and 5 GHz is as low as 24 dB and 29 dB, respectively. Then, a metal-semiconductor (MS) diode is tested as a zero-bias millimeter-wave power detector and reaches an outstanding linear-in-dB dynamic range over 40 dB, while having voltage responsivities as high as 257 V ⋅ W−1 at 1 GHz (up to 1 V detected output voltage) and 47 V ⋅ W−1 at 2.5 GHz (up to 0.26 V detected output voltage). These results show superior performance compared to other 2D material-based devices in a much more mature technological phase. Thus, the authors believe that this work demonstrates the potential of 2D-Te as a promising material for devices in emerging high-frequency electronics.\",\"PeriodicalId\":19227,\"journal\":{\"name\":\"npj 2D Materials and Applications\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41699-023-00433-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj 2D Materials and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41699-023-00433-w\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-023-00433-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Two-dimensional tellurium-based diodes for RF applications
The research of two-dimensional (2D) Tellurium (Te) or tellurene is thriving to address current challenges in emerging thin-film electronic and optoelectronic devices. However, the study of 2D-Te-based devices for high-frequency applications is still lacking in the literature. This work presents a comprehensive study of two types of radio frequency (RF) diodes based on 2D-Te flakes and exploits their distinct properties in two RF applications. First, a metal-insulator-semiconductor (MIS) structure is employed as a nonlinear device in a passive RF mixer, where the achieved conversion loss at 2.5 GHz and 5 GHz is as low as 24 dB and 29 dB, respectively. Then, a metal-semiconductor (MS) diode is tested as a zero-bias millimeter-wave power detector and reaches an outstanding linear-in-dB dynamic range over 40 dB, while having voltage responsivities as high as 257 V ⋅ W−1 at 1 GHz (up to 1 V detected output voltage) and 47 V ⋅ W−1 at 2.5 GHz (up to 0.26 V detected output voltage). These results show superior performance compared to other 2D material-based devices in a much more mature technological phase. Thus, the authors believe that this work demonstrates the potential of 2D-Te as a promising material for devices in emerging high-frequency electronics.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.