{"title":"减少气候变化对建筑物性能的直接影响的路线图;以世界前8大沙漠和前8大最冷地区为例进行研究","authors":"Modeste Kameni Nematchoua , Mahsan Sadeghi , Sigrid Reiter , Shady Attia","doi":"10.1016/j.nxsust.2023.100007","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change significantly impacts building performance. Indoor comfort, energy demand, carbon emissions, and building maintenance costs vary according to the local climate. This research has been conducted, to investigate, simulate, analyze, compare and discuss the potential impact of climate change on thermal comfort, heating and cooling energy needs in a hospital, hotel, school and residential home located in the top 8 deserts and the top 8 coldest regions in the world. Simulations were conducted for future climate using ten (10) general circulation models (GCM) based on three emission scenarios, namely B1(low emission), A1B (middle emission), and A2 (high emission); and Representative Concentration Pathway (RCP) (RCP2.6; RCP 4.5, and RCP 8.5). The thermal performance of buildings was assessed for three periods (Current, 2050 and 2100). The results showed that in 2100, air temperature is expected to increase up to 4.9 °C in desert regions, this effect will produce an increase of 34.5% in cooling load, and 73% of the not comfortable rate in the buildings; while in the same year, in the coldest regions, the air temperature is expected to increase up to 5.5 °C, producing a decrease of heating load up to 15.5%, and an increase of comfort rate up to 25%. The thermal comfort temperature range was between 23.9 °C and 29.8 °C. In desert regions, the heating loads are very low, indeed, they represent only 6.5% of the total loads (loads used for cooling and heating), while in the coldest regions, the cooling loads represent only 7.3% of the total loads.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"1 ","pages":"Article 100007"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823623000077/pdfft?md5=0eb95435b71338ae698e800c5d33e017&pid=1-s2.0-S2949823623000077-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Roadmap to reduce the direct effects of climate change on building performance; A case study applied to the top 8 deserts and top 8 coldest regions in the world\",\"authors\":\"Modeste Kameni Nematchoua , Mahsan Sadeghi , Sigrid Reiter , Shady Attia\",\"doi\":\"10.1016/j.nxsust.2023.100007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Climate change significantly impacts building performance. Indoor comfort, energy demand, carbon emissions, and building maintenance costs vary according to the local climate. This research has been conducted, to investigate, simulate, analyze, compare and discuss the potential impact of climate change on thermal comfort, heating and cooling energy needs in a hospital, hotel, school and residential home located in the top 8 deserts and the top 8 coldest regions in the world. Simulations were conducted for future climate using ten (10) general circulation models (GCM) based on three emission scenarios, namely B1(low emission), A1B (middle emission), and A2 (high emission); and Representative Concentration Pathway (RCP) (RCP2.6; RCP 4.5, and RCP 8.5). The thermal performance of buildings was assessed for three periods (Current, 2050 and 2100). The results showed that in 2100, air temperature is expected to increase up to 4.9 °C in desert regions, this effect will produce an increase of 34.5% in cooling load, and 73% of the not comfortable rate in the buildings; while in the same year, in the coldest regions, the air temperature is expected to increase up to 5.5 °C, producing a decrease of heating load up to 15.5%, and an increase of comfort rate up to 25%. The thermal comfort temperature range was between 23.9 °C and 29.8 °C. In desert regions, the heating loads are very low, indeed, they represent only 6.5% of the total loads (loads used for cooling and heating), while in the coldest regions, the cooling loads represent only 7.3% of the total loads.</p></div>\",\"PeriodicalId\":100960,\"journal\":{\"name\":\"Next Sustainability\",\"volume\":\"1 \",\"pages\":\"Article 100007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949823623000077/pdfft?md5=0eb95435b71338ae698e800c5d33e017&pid=1-s2.0-S2949823623000077-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949823623000077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823623000077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Roadmap to reduce the direct effects of climate change on building performance; A case study applied to the top 8 deserts and top 8 coldest regions in the world
Climate change significantly impacts building performance. Indoor comfort, energy demand, carbon emissions, and building maintenance costs vary according to the local climate. This research has been conducted, to investigate, simulate, analyze, compare and discuss the potential impact of climate change on thermal comfort, heating and cooling energy needs in a hospital, hotel, school and residential home located in the top 8 deserts and the top 8 coldest regions in the world. Simulations were conducted for future climate using ten (10) general circulation models (GCM) based on three emission scenarios, namely B1(low emission), A1B (middle emission), and A2 (high emission); and Representative Concentration Pathway (RCP) (RCP2.6; RCP 4.5, and RCP 8.5). The thermal performance of buildings was assessed for three periods (Current, 2050 and 2100). The results showed that in 2100, air temperature is expected to increase up to 4.9 °C in desert regions, this effect will produce an increase of 34.5% in cooling load, and 73% of the not comfortable rate in the buildings; while in the same year, in the coldest regions, the air temperature is expected to increase up to 5.5 °C, producing a decrease of heating load up to 15.5%, and an increase of comfort rate up to 25%. The thermal comfort temperature range was between 23.9 °C and 29.8 °C. In desert regions, the heating loads are very low, indeed, they represent only 6.5% of the total loads (loads used for cooling and heating), while in the coldest regions, the cooling loads represent only 7.3% of the total loads.