机器学习的现代计量经济学方法在模拟影响地方预算支出的因素

Yurii Puhach
{"title":"机器学习的现代计量经济学方法在模拟影响地方预算支出的因素","authors":"Yurii Puhach","doi":"10.32752/1993-6788-2023-1-261-67-74","DOIUrl":null,"url":null,"abstract":"The article proposes to expand approaches to planning and budgeting processes. Machine learning technologies were used based on the intelligent gradient boosting algorithm of decision trees (XGBoost Tree). Reliable estimates of expenditures provided a connection between different socio-economic characteristics of regions and made it possible to predict the level of influence of factors on the expenditures of local budgets.","PeriodicalId":488521,"journal":{"name":"Actual Problems of Economics","volume":"478 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODERN ECONOMETRIC APPROACHES OF MACHINE LEARNING IN THE SIMULATION OF FACTORS INFLUENCING LOCAL BUDGET EXPENDITURES\",\"authors\":\"Yurii Puhach\",\"doi\":\"10.32752/1993-6788-2023-1-261-67-74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article proposes to expand approaches to planning and budgeting processes. Machine learning technologies were used based on the intelligent gradient boosting algorithm of decision trees (XGBoost Tree). Reliable estimates of expenditures provided a connection between different socio-economic characteristics of regions and made it possible to predict the level of influence of factors on the expenditures of local budgets.\",\"PeriodicalId\":488521,\"journal\":{\"name\":\"Actual Problems of Economics\",\"volume\":\"478 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actual Problems of Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32752/1993-6788-2023-1-261-67-74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actual Problems of Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32752/1993-6788-2023-1-261-67-74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文章建议扩大规划和预算编制过程的方法。采用基于决策树智能梯度提升算法(XGBoost Tree)的机器学习技术。可靠的支出估计提供了各区域不同社会经济特征之间的联系,并使预测各种因素对地方预算支出的影响程度成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MODERN ECONOMETRIC APPROACHES OF MACHINE LEARNING IN THE SIMULATION OF FACTORS INFLUENCING LOCAL BUDGET EXPENDITURES
The article proposes to expand approaches to planning and budgeting processes. Machine learning technologies were used based on the intelligent gradient boosting algorithm of decision trees (XGBoost Tree). Reliable estimates of expenditures provided a connection between different socio-economic characteristics of regions and made it possible to predict the level of influence of factors on the expenditures of local budgets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信