{"title":"校正后C3S和NMME模式对孟加拉国夏季风降水的预报技巧","authors":"Muhammad Azhar Ehsan, Bohar Singh","doi":"10.1016/j.dynatmoce.2023.101410","DOIUrl":null,"url":null,"abstract":"<div><p>This study assesses the dynamical seasonal predictions initialized in April and May for forecasting Bangladesh summer (June to September: JJAS) monsoon rainfall (BSMR) over the 1993–2016 period. The BSMR from nine models, sourced from the North American Multi-Model Ensemble (NMME) and the Copernicus Climate Change Service (C3S), undergoes a calibration process. This calibration employs the Canonical Correlation Analysis (CCA) technique to rectify biases within each individual model's ensemble mean BSMR data (referred as predictor or X variable). These corrections are made in comparison to observed BSMR (referred as predictand or Y variable), acquired from the Climate Hazards Group InfraRed Precipitation with Station data. Subsequently, the models that undergo calibration are amalgamated to construct a calibrated multi-model ensemble (CMME), which, in turn, facilitates the generation of a forecast for BSMR. The CCA correction brings about a significant improvement in root-mean-square error, underscoring the presence of correctable systematic biases in the raw model forecasts. However, these CCA corrections weakly enhance the skill (anomaly correlation) across the region. The scores that assess discrimination (the two-alternative forced-choice: 2AFC and the area under the relative operating characteristic curve: ROC for above/below normal BSMR) for tercile-based forecasts exceeded 50 % across a substantial portion of the region. This indicates a superior level of discrimination compared to what one would anticipate based on climatology. Using the CMME approach, a probabilistic forecast for the 2022 BSMR was generated and proved quite effective in capturing the observed 2022 BSMR tercile, which includes below-normal and above-normal categories of rainfall in the central-southern and northern regions of Bangladesh respectively. Furthermore, the absence of substantial skill improvements may be attributed to inaccuracies in the teleconnection patterns of the simulated first leading principal component (PC) time series of BSMR with the El Niño Southern Oscillation. In contrast, the second PC time series exhibits a similar connection to observations. These findings emphasize the importance and utility of statistical post-processing in producing reliable seasonal climate outlooks for the region.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"104 ","pages":"Article 101410"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377026523000611/pdfft?md5=4a637654a0b409cd5f2b6d7adf2e540a&pid=1-s2.0-S0377026523000611-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Forecast skill of Bangladesh summer monsoon rainfall in C3S and NMME models after calibration\",\"authors\":\"Muhammad Azhar Ehsan, Bohar Singh\",\"doi\":\"10.1016/j.dynatmoce.2023.101410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study assesses the dynamical seasonal predictions initialized in April and May for forecasting Bangladesh summer (June to September: JJAS) monsoon rainfall (BSMR) over the 1993–2016 period. The BSMR from nine models, sourced from the North American Multi-Model Ensemble (NMME) and the Copernicus Climate Change Service (C3S), undergoes a calibration process. This calibration employs the Canonical Correlation Analysis (CCA) technique to rectify biases within each individual model's ensemble mean BSMR data (referred as predictor or X variable). These corrections are made in comparison to observed BSMR (referred as predictand or Y variable), acquired from the Climate Hazards Group InfraRed Precipitation with Station data. Subsequently, the models that undergo calibration are amalgamated to construct a calibrated multi-model ensemble (CMME), which, in turn, facilitates the generation of a forecast for BSMR. The CCA correction brings about a significant improvement in root-mean-square error, underscoring the presence of correctable systematic biases in the raw model forecasts. However, these CCA corrections weakly enhance the skill (anomaly correlation) across the region. The scores that assess discrimination (the two-alternative forced-choice: 2AFC and the area under the relative operating characteristic curve: ROC for above/below normal BSMR) for tercile-based forecasts exceeded 50 % across a substantial portion of the region. This indicates a superior level of discrimination compared to what one would anticipate based on climatology. Using the CMME approach, a probabilistic forecast for the 2022 BSMR was generated and proved quite effective in capturing the observed 2022 BSMR tercile, which includes below-normal and above-normal categories of rainfall in the central-southern and northern regions of Bangladesh respectively. Furthermore, the absence of substantial skill improvements may be attributed to inaccuracies in the teleconnection patterns of the simulated first leading principal component (PC) time series of BSMR with the El Niño Southern Oscillation. In contrast, the second PC time series exhibits a similar connection to observations. These findings emphasize the importance and utility of statistical post-processing in producing reliable seasonal climate outlooks for the region.</p></div>\",\"PeriodicalId\":50563,\"journal\":{\"name\":\"Dynamics of Atmospheres and Oceans\",\"volume\":\"104 \",\"pages\":\"Article 101410\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0377026523000611/pdfft?md5=4a637654a0b409cd5f2b6d7adf2e540a&pid=1-s2.0-S0377026523000611-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Atmospheres and Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377026523000611\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026523000611","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Forecast skill of Bangladesh summer monsoon rainfall in C3S and NMME models after calibration
This study assesses the dynamical seasonal predictions initialized in April and May for forecasting Bangladesh summer (June to September: JJAS) monsoon rainfall (BSMR) over the 1993–2016 period. The BSMR from nine models, sourced from the North American Multi-Model Ensemble (NMME) and the Copernicus Climate Change Service (C3S), undergoes a calibration process. This calibration employs the Canonical Correlation Analysis (CCA) technique to rectify biases within each individual model's ensemble mean BSMR data (referred as predictor or X variable). These corrections are made in comparison to observed BSMR (referred as predictand or Y variable), acquired from the Climate Hazards Group InfraRed Precipitation with Station data. Subsequently, the models that undergo calibration are amalgamated to construct a calibrated multi-model ensemble (CMME), which, in turn, facilitates the generation of a forecast for BSMR. The CCA correction brings about a significant improvement in root-mean-square error, underscoring the presence of correctable systematic biases in the raw model forecasts. However, these CCA corrections weakly enhance the skill (anomaly correlation) across the region. The scores that assess discrimination (the two-alternative forced-choice: 2AFC and the area under the relative operating characteristic curve: ROC for above/below normal BSMR) for tercile-based forecasts exceeded 50 % across a substantial portion of the region. This indicates a superior level of discrimination compared to what one would anticipate based on climatology. Using the CMME approach, a probabilistic forecast for the 2022 BSMR was generated and proved quite effective in capturing the observed 2022 BSMR tercile, which includes below-normal and above-normal categories of rainfall in the central-southern and northern regions of Bangladesh respectively. Furthermore, the absence of substantial skill improvements may be attributed to inaccuracies in the teleconnection patterns of the simulated first leading principal component (PC) time series of BSMR with the El Niño Southern Oscillation. In contrast, the second PC time series exhibits a similar connection to observations. These findings emphasize the importance and utility of statistical post-processing in producing reliable seasonal climate outlooks for the region.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.