{"title":"在电沉积法合成的铜/锌金属间催化剂上电化学还原二氧化碳至 C2+ 产物","authors":"Ting Deng, Shuaiqiang Jia, Shitao Han, Jianxin Zhai, Jiapeng Jiao, Xiao Chen, Cheng Xue, Xueqing Xing, Wei Xia, Haihong Wu, Mingyuan He, Buxing Han","doi":"10.1007/s11708-023-0898-0","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalytic CO<sub>2</sub> reduction (ECR) offers an attractive approach to realizing carbon neutrality and producing valuable chemicals and fuels using CO<sub>2</sub> as the feedstock. However, the lack of cost-effective electrocatalysts with better performances has seriously hindered its application. Herein, a one-step co-electrodeposition method was used to introduce Zn, a metal with weak *CO binding energy, into Cu to form Cu/Zn intermetallic catalysts (Cu/Zn IMCs). It was shown that, using an H-cell, the high Faradaic efficiency of C<sub>2+</sub> hydrocarbons/alcohols <span>\\(({\\rm{F}}{{\\rm{E}}_{{{\\rm{C}}_{2 + }}}})\\)</span> could be achieved in ECR by adjusting the surface metal components and the applied potential. In suitable conditions, FE<sub>C2+</sub> and current density could be as high as 75% and 40 mA/cm<sup>2</sup>, respectively. Compared with the Cu catalyst, the Cu/Zn IMCs have a lower interfacial charge transfer resistance and a larger electrochemically active surface area (ECSA), which accelerate the reaction. Moreover, the *CO formed on Zn sites can move to Cu sites due to its weak binding with *CO, and thus enhance the C–C coupling on the Cu surface to form C<sub>2+</sub> products.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 1","pages":"80 - 88"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical CO2 reduction to C2+ products over Cu/Zn intermetallic catalysts synthesized by electrodeposition\",\"authors\":\"Ting Deng, Shuaiqiang Jia, Shitao Han, Jianxin Zhai, Jiapeng Jiao, Xiao Chen, Cheng Xue, Xueqing Xing, Wei Xia, Haihong Wu, Mingyuan He, Buxing Han\",\"doi\":\"10.1007/s11708-023-0898-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrocatalytic CO<sub>2</sub> reduction (ECR) offers an attractive approach to realizing carbon neutrality and producing valuable chemicals and fuels using CO<sub>2</sub> as the feedstock. However, the lack of cost-effective electrocatalysts with better performances has seriously hindered its application. Herein, a one-step co-electrodeposition method was used to introduce Zn, a metal with weak *CO binding energy, into Cu to form Cu/Zn intermetallic catalysts (Cu/Zn IMCs). It was shown that, using an H-cell, the high Faradaic efficiency of C<sub>2+</sub> hydrocarbons/alcohols <span>\\\\(({\\\\rm{F}}{{\\\\rm{E}}_{{{\\\\rm{C}}_{2 + }}}})\\\\)</span> could be achieved in ECR by adjusting the surface metal components and the applied potential. In suitable conditions, FE<sub>C2+</sub> and current density could be as high as 75% and 40 mA/cm<sup>2</sup>, respectively. Compared with the Cu catalyst, the Cu/Zn IMCs have a lower interfacial charge transfer resistance and a larger electrochemically active surface area (ECSA), which accelerate the reaction. Moreover, the *CO formed on Zn sites can move to Cu sites due to its weak binding with *CO, and thus enhance the C–C coupling on the Cu surface to form C<sub>2+</sub> products.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"18 1\",\"pages\":\"80 - 88\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-023-0898-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-023-0898-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Electrochemical CO2 reduction to C2+ products over Cu/Zn intermetallic catalysts synthesized by electrodeposition
Electrocatalytic CO2 reduction (ECR) offers an attractive approach to realizing carbon neutrality and producing valuable chemicals and fuels using CO2 as the feedstock. However, the lack of cost-effective electrocatalysts with better performances has seriously hindered its application. Herein, a one-step co-electrodeposition method was used to introduce Zn, a metal with weak *CO binding energy, into Cu to form Cu/Zn intermetallic catalysts (Cu/Zn IMCs). It was shown that, using an H-cell, the high Faradaic efficiency of C2+ hydrocarbons/alcohols \(({\rm{F}}{{\rm{E}}_{{{\rm{C}}_{2 + }}}})\) could be achieved in ECR by adjusting the surface metal components and the applied potential. In suitable conditions, FEC2+ and current density could be as high as 75% and 40 mA/cm2, respectively. Compared with the Cu catalyst, the Cu/Zn IMCs have a lower interfacial charge transfer resistance and a larger electrochemically active surface area (ECSA), which accelerate the reaction. Moreover, the *CO formed on Zn sites can move to Cu sites due to its weak binding with *CO, and thus enhance the C–C coupling on the Cu surface to form C2+ products.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue