Kaspars Balodis, Shalev Ben-David, Mika Göös, Siddhartha Jain, Robin Kothari
{"title":"不明确的 DNF 和阿隆-萨克斯-塞缪尔","authors":"Kaspars Balodis, Shalev Ben-David, Mika Göös, Siddhartha Jain, Robin Kothari","doi":"10.1137/22m1480616","DOIUrl":null,"url":null,"abstract":"We exhibit an unambiguous -DNF (disjunctive normal form) formula that requires conjunctive normal form width , which is optimal up to logarithmic factors. As a consequence, we get a near-optimal solution to the Alon–Saks–Seymour problem in graph theory (posed in 1991), which asks, How large a gap can there be between the chromatic number of a graph and its biclique partition number? Our result is also known to imply several other improved separations in query/communication complexity, learning theory, and automata theory.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"1 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unambiguous DNFs and Alon–Saks–Seymour\",\"authors\":\"Kaspars Balodis, Shalev Ben-David, Mika Göös, Siddhartha Jain, Robin Kothari\",\"doi\":\"10.1137/22m1480616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit an unambiguous -DNF (disjunctive normal form) formula that requires conjunctive normal form width , which is optimal up to logarithmic factors. As a consequence, we get a near-optimal solution to the Alon–Saks–Seymour problem in graph theory (posed in 1991), which asks, How large a gap can there be between the chromatic number of a graph and its biclique partition number? Our result is also known to imply several other improved separations in query/communication complexity, learning theory, and automata theory.\",\"PeriodicalId\":49532,\"journal\":{\"name\":\"SIAM Journal on Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1480616\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1480616","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We exhibit an unambiguous -DNF (disjunctive normal form) formula that requires conjunctive normal form width , which is optimal up to logarithmic factors. As a consequence, we get a near-optimal solution to the Alon–Saks–Seymour problem in graph theory (posed in 1991), which asks, How large a gap can there be between the chromatic number of a graph and its biclique partition number? Our result is also known to imply several other improved separations in query/communication complexity, learning theory, and automata theory.
期刊介绍:
The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.