不明确的 DNF 和阿隆-萨克斯-塞缪尔

IF 1.2 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Kaspars Balodis, Shalev Ben-David, Mika Göös, Siddhartha Jain, Robin Kothari
{"title":"不明确的 DNF 和阿隆-萨克斯-塞缪尔","authors":"Kaspars Balodis, Shalev Ben-David, Mika Göös, Siddhartha Jain, Robin Kothari","doi":"10.1137/22m1480616","DOIUrl":null,"url":null,"abstract":"We exhibit an unambiguous -DNF (disjunctive normal form) formula that requires conjunctive normal form width , which is optimal up to logarithmic factors. As a consequence, we get a near-optimal solution to the Alon–Saks–Seymour problem in graph theory (posed in 1991), which asks, How large a gap can there be between the chromatic number of a graph and its biclique partition number? Our result is also known to imply several other improved separations in query/communication complexity, learning theory, and automata theory.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"1 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unambiguous DNFs and Alon–Saks–Seymour\",\"authors\":\"Kaspars Balodis, Shalev Ben-David, Mika Göös, Siddhartha Jain, Robin Kothari\",\"doi\":\"10.1137/22m1480616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit an unambiguous -DNF (disjunctive normal form) formula that requires conjunctive normal form width , which is optimal up to logarithmic factors. As a consequence, we get a near-optimal solution to the Alon–Saks–Seymour problem in graph theory (posed in 1991), which asks, How large a gap can there be between the chromatic number of a graph and its biclique partition number? Our result is also known to imply several other improved separations in query/communication complexity, learning theory, and automata theory.\",\"PeriodicalId\":49532,\"journal\":{\"name\":\"SIAM Journal on Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1480616\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1480616","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

我们展示了一个明确的-DNF(析取范式)公式,它需要合取范式宽度,这是最优的对数因子。因此,我们得到了图论中Alon-Saks-Seymour问题(1991年提出)的近最优解,该问题的问题是:图的色数与其双曲线分割数之间的差距有多大?我们的结果还暗示了查询/通信复杂性、学习理论和自动机理论中其他几个改进的分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unambiguous DNFs and Alon–Saks–Seymour
We exhibit an unambiguous -DNF (disjunctive normal form) formula that requires conjunctive normal form width , which is optimal up to logarithmic factors. As a consequence, we get a near-optimal solution to the Alon–Saks–Seymour problem in graph theory (posed in 1991), which asks, How large a gap can there be between the chromatic number of a graph and its biclique partition number? Our result is also known to imply several other improved separations in query/communication complexity, learning theory, and automata theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Computing
SIAM Journal on Computing 工程技术-计算机:理论方法
CiteScore
4.60
自引率
0.00%
发文量
68
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信