{"title":"考察地方样本量对货运生产模型空间可转移性的影响","authors":"Bhavani Shankar Balla, Prasanta K. Sahu","doi":"10.1177/03611981231197649","DOIUrl":null,"url":null,"abstract":"Recent research in freight transportation planning has been exploring the spatial transferability of freight demand models, which can help the planning agencies of developing economies save the cost and time incurred in freight surveys. As the demand models are time-, cost-, and data-intensive, it is prudent to analyze the effects of sample size on the transferred model in a region. The findings and inferences from such analysis will save resources in freight data collection programs. Earlier, conventional models like ordinary least squares (OLS) regression were assessed for transferability. However, the predictive ability and transferability of such non-conventional models are not well studied. It is necessary to understand whether the extent of transferability of non-conventional models is greater than that of conventional models so that planning agencies can adopt more reliable modeling approaches. This paper investigates the spatial transferability of freight production models using OLS, robust regression, and multiple classification analysis (MCA). The results of the transferability assessment show that MCA models have better transferability using the naïve transfer method. In addition, transferability is assessed for different sample sizes to examine the variation in the extent of transferability. The MCA models have shown the least deviation, indicating that these models are preferred for transferability when the sample size is small.","PeriodicalId":23279,"journal":{"name":"Transportation Research Record","volume":"73 3","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining the Effects of Local Sample Sizes on Spatial Transferability of Freight Production Models\",\"authors\":\"Bhavani Shankar Balla, Prasanta K. Sahu\",\"doi\":\"10.1177/03611981231197649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research in freight transportation planning has been exploring the spatial transferability of freight demand models, which can help the planning agencies of developing economies save the cost and time incurred in freight surveys. As the demand models are time-, cost-, and data-intensive, it is prudent to analyze the effects of sample size on the transferred model in a region. The findings and inferences from such analysis will save resources in freight data collection programs. Earlier, conventional models like ordinary least squares (OLS) regression were assessed for transferability. However, the predictive ability and transferability of such non-conventional models are not well studied. It is necessary to understand whether the extent of transferability of non-conventional models is greater than that of conventional models so that planning agencies can adopt more reliable modeling approaches. This paper investigates the spatial transferability of freight production models using OLS, robust regression, and multiple classification analysis (MCA). The results of the transferability assessment show that MCA models have better transferability using the naïve transfer method. In addition, transferability is assessed for different sample sizes to examine the variation in the extent of transferability. The MCA models have shown the least deviation, indicating that these models are preferred for transferability when the sample size is small.\",\"PeriodicalId\":23279,\"journal\":{\"name\":\"Transportation Research Record\",\"volume\":\"73 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03611981231197649\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981231197649","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Examining the Effects of Local Sample Sizes on Spatial Transferability of Freight Production Models
Recent research in freight transportation planning has been exploring the spatial transferability of freight demand models, which can help the planning agencies of developing economies save the cost and time incurred in freight surveys. As the demand models are time-, cost-, and data-intensive, it is prudent to analyze the effects of sample size on the transferred model in a region. The findings and inferences from such analysis will save resources in freight data collection programs. Earlier, conventional models like ordinary least squares (OLS) regression were assessed for transferability. However, the predictive ability and transferability of such non-conventional models are not well studied. It is necessary to understand whether the extent of transferability of non-conventional models is greater than that of conventional models so that planning agencies can adopt more reliable modeling approaches. This paper investigates the spatial transferability of freight production models using OLS, robust regression, and multiple classification analysis (MCA). The results of the transferability assessment show that MCA models have better transferability using the naïve transfer method. In addition, transferability is assessed for different sample sizes to examine the variation in the extent of transferability. The MCA models have shown the least deviation, indicating that these models are preferred for transferability when the sample size is small.
期刊介绍:
Transportation Research Record: Journal of the Transportation Research Board is one of the most cited and prolific transportation journals in the world, offering unparalleled depth and breadth in the coverage of transportation-related topics. The TRR publishes approximately 70 issues annually of outstanding, peer-reviewed papers presenting research findings in policy, planning, administration, economics and financing, operations, construction, design, maintenance, safety, and more, for all modes of transportation. This site provides electronic access to a full compilation of papers since the 1996 series.