Ashish R. Hota, Urmee Maitra, Ezzat Elokda, Saverio Bolognani
{"title":"学习减轻流行病风险:动态人口博弈方法","authors":"Ashish R. Hota, Urmee Maitra, Ezzat Elokda, Saverio Bolognani","doi":"10.1007/s13235-023-00529-4","DOIUrl":null,"url":null,"abstract":"Abstract We present a dynamic population game model to capture the behavior of a large population of individuals in presence of an infectious disease or epidemic. Individuals can be in one of five possible infection states at any given time: susceptible, asymptomatic, symptomatic, recovered and unknowingly recovered, and choose whether to opt for vaccination, testing or social activity with a certain degree. We define the evolution of the proportion of agents in each epidemic state, and the notion of best response for agents that maximize long-run discounted expected reward as a function of the current state and policy. We further show the existence of a stationary Nash equilibrium and explore the transient evolution of the disease states and individual behavior under a class of evolutionary learning dynamics. Our results provide compelling insights into how individuals evaluate the trade-off among vaccination, testing and social activity under different parameter regimes, and the impact of different intervention strategies (such as restrictions on social activity) on vaccination and infection prevalence.","PeriodicalId":48933,"journal":{"name":"Dynamic Games and Applications","volume":"35 3","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning to Mitigate Epidemic Risks: A Dynamic Population Game Approach\",\"authors\":\"Ashish R. Hota, Urmee Maitra, Ezzat Elokda, Saverio Bolognani\",\"doi\":\"10.1007/s13235-023-00529-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a dynamic population game model to capture the behavior of a large population of individuals in presence of an infectious disease or epidemic. Individuals can be in one of five possible infection states at any given time: susceptible, asymptomatic, symptomatic, recovered and unknowingly recovered, and choose whether to opt for vaccination, testing or social activity with a certain degree. We define the evolution of the proportion of agents in each epidemic state, and the notion of best response for agents that maximize long-run discounted expected reward as a function of the current state and policy. We further show the existence of a stationary Nash equilibrium and explore the transient evolution of the disease states and individual behavior under a class of evolutionary learning dynamics. Our results provide compelling insights into how individuals evaluate the trade-off among vaccination, testing and social activity under different parameter regimes, and the impact of different intervention strategies (such as restrictions on social activity) on vaccination and infection prevalence.\",\"PeriodicalId\":48933,\"journal\":{\"name\":\"Dynamic Games and Applications\",\"volume\":\"35 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamic Games and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13235-023-00529-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamic Games and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13235-023-00529-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Learning to Mitigate Epidemic Risks: A Dynamic Population Game Approach
Abstract We present a dynamic population game model to capture the behavior of a large population of individuals in presence of an infectious disease or epidemic. Individuals can be in one of five possible infection states at any given time: susceptible, asymptomatic, symptomatic, recovered and unknowingly recovered, and choose whether to opt for vaccination, testing or social activity with a certain degree. We define the evolution of the proportion of agents in each epidemic state, and the notion of best response for agents that maximize long-run discounted expected reward as a function of the current state and policy. We further show the existence of a stationary Nash equilibrium and explore the transient evolution of the disease states and individual behavior under a class of evolutionary learning dynamics. Our results provide compelling insights into how individuals evaluate the trade-off among vaccination, testing and social activity under different parameter regimes, and the impact of different intervention strategies (such as restrictions on social activity) on vaccination and infection prevalence.
期刊介绍:
Dynamic Games and Applications is devoted to the development of all classes of dynamic games, namely, differential games, discrete-time dynamic games, evolutionary games, repeated and stochastic games, and their applications in all fields