Gianmarco Caldini , Andrea Marchese , Andrea Merlo , Simone Steinbrüchel
{"title":"高原问题的一般唯一性","authors":"Gianmarco Caldini , Andrea Marchese , Andrea Merlo , Simone Steinbrüchel","doi":"10.1016/j.matpur.2023.10.010","DOIUrl":null,"url":null,"abstract":"<div><p>Given a complete Riemannian manifold <span><math><mi>M</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> which is a Lipschitz neighborhood retract of dimension <span><math><mi>m</mi><mo>+</mo><mi>n</mi></math></span>, of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>h</mi><mo>,</mo><mi>β</mi></mrow></msup></math></span> and an oriented, closed submanifold <span><math><mi>Γ</mi><mo>⊂</mo><mi>M</mi></math></span> of dimension <span><math><mi>m</mi><mo>−</mo><mn>1</mn></math></span>, which is a boundary in integral homology, we construct a complete metric space <span><math><mi>B</mi></math></span> of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>h</mi><mo>,</mo><mi>α</mi></mrow></msup></math></span>-perturbations of Γ inside <span><math><mi>M</mi></math></span>, with <span><math><mi>α</mi><mo><</mo><mi>β</mi></math></span>, enjoying the following property. For the typical element <span><math><mi>b</mi><mo>∈</mo><mi>B</mi></math></span>, in the sense of Baire categories, there exists a unique <em>m</em>-dimensional integral current in <span><math><mi>M</mi></math></span> which solves the corresponding Plateau problem and it has multiplicity one.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782423001514/pdfft?md5=3ea9206021feeebc508e67ce882752fd&pid=1-s2.0-S0021782423001514-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Generic uniqueness for the Plateau problem\",\"authors\":\"Gianmarco Caldini , Andrea Marchese , Andrea Merlo , Simone Steinbrüchel\",\"doi\":\"10.1016/j.matpur.2023.10.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a complete Riemannian manifold <span><math><mi>M</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> which is a Lipschitz neighborhood retract of dimension <span><math><mi>m</mi><mo>+</mo><mi>n</mi></math></span>, of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>h</mi><mo>,</mo><mi>β</mi></mrow></msup></math></span> and an oriented, closed submanifold <span><math><mi>Γ</mi><mo>⊂</mo><mi>M</mi></math></span> of dimension <span><math><mi>m</mi><mo>−</mo><mn>1</mn></math></span>, which is a boundary in integral homology, we construct a complete metric space <span><math><mi>B</mi></math></span> of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>h</mi><mo>,</mo><mi>α</mi></mrow></msup></math></span>-perturbations of Γ inside <span><math><mi>M</mi></math></span>, with <span><math><mi>α</mi><mo><</mo><mi>β</mi></math></span>, enjoying the following property. For the typical element <span><math><mi>b</mi><mo>∈</mo><mi>B</mi></math></span>, in the sense of Baire categories, there exists a unique <em>m</em>-dimensional integral current in <span><math><mi>M</mi></math></span> which solves the corresponding Plateau problem and it has multiplicity one.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001514/pdfft?md5=3ea9206021feeebc508e67ce882752fd&pid=1-s2.0-S0021782423001514-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782423001514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
摘要
莫德a complete Riemannian流形M⊂Rd - which is a李普希茨邻里retract of of class M + n维度,Ch,通过面向βand an,关闭submanifoldΓ⊂of维度M in integral homology−1,which is a号边界,we建筑B a complete规space of Ch,α-perturbations ofΓinside M, with the <β、α,他会请property。对于典型元素b∈b,在贝尔范畴的意义上,存在一个独特的M维积分流,它解决了对应的平台问题,它有一个多重性。一双(M),有人认为Γ⊂Rd),其中M是M + n维度全面品种和班级Ch、β是邻里rétract李普希茨、和Γ⊂M是sous-variété封闭和导向,即整整一个已知的边缘。正在建一个完整metrique扰动Ch,αBΓ在β、α< M,满足如下:对于任何所有权B∈通用在Baire sense有整整一个独一无二的潮流中M, m-dimensionnelle和多样性,这是解决塞浦路斯问题和相应的高原。
Given a complete Riemannian manifold which is a Lipschitz neighborhood retract of dimension , of class and an oriented, closed submanifold of dimension , which is a boundary in integral homology, we construct a complete metric space of -perturbations of Γ inside , with , enjoying the following property. For the typical element , in the sense of Baire categories, there exists a unique m-dimensional integral current in which solves the corresponding Plateau problem and it has multiplicity one.