{"title":"波斯语n-gram语言模型训练集的智能扩展:一种浓缩算法","authors":"Rezvan Motavallian, Masoud Komeily","doi":"10.7764/onomazein.61.09","DOIUrl":null,"url":null,"abstract":"In this article, we are going to introduce an automatic mechanism to intelligently extend the training set to improve the n-gram language model of Persian. Given the free word-order property in Persian, our enrichment algorithm diversifies n-gram combinations in baseline training data through dependency reordering, adding permissible sentences and filtering ungrammatical sentences using a hybrid empirical (heuristic) and linguistic approach. Experiments performed on baseline training set (taken from a standard Persian corpus) and the resulting enriched training set indicate a declining trend in average relative perplexity (between 34% to 73%) for informal/spoken vs. formal/written Persian test data.","PeriodicalId":500248,"journal":{"name":"Onomázein Revista de lingüística filología y traducción","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An intelligent extension of the training set for the Persian n-gram language model: an enrichment algorithm\",\"authors\":\"Rezvan Motavallian, Masoud Komeily\",\"doi\":\"10.7764/onomazein.61.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we are going to introduce an automatic mechanism to intelligently extend the training set to improve the n-gram language model of Persian. Given the free word-order property in Persian, our enrichment algorithm diversifies n-gram combinations in baseline training data through dependency reordering, adding permissible sentences and filtering ungrammatical sentences using a hybrid empirical (heuristic) and linguistic approach. Experiments performed on baseline training set (taken from a standard Persian corpus) and the resulting enriched training set indicate a declining trend in average relative perplexity (between 34% to 73%) for informal/spoken vs. formal/written Persian test data.\",\"PeriodicalId\":500248,\"journal\":{\"name\":\"Onomázein Revista de lingüística filología y traducción\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Onomázein Revista de lingüística filología y traducción\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7764/onomazein.61.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Onomázein Revista de lingüística filología y traducción","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7764/onomazein.61.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An intelligent extension of the training set for the Persian n-gram language model: an enrichment algorithm
In this article, we are going to introduce an automatic mechanism to intelligently extend the training set to improve the n-gram language model of Persian. Given the free word-order property in Persian, our enrichment algorithm diversifies n-gram combinations in baseline training data through dependency reordering, adding permissible sentences and filtering ungrammatical sentences using a hybrid empirical (heuristic) and linguistic approach. Experiments performed on baseline training set (taken from a standard Persian corpus) and the resulting enriched training set indicate a declining trend in average relative perplexity (between 34% to 73%) for informal/spoken vs. formal/written Persian test data.