波斯语n-gram语言模型训练集的智能扩展:一种浓缩算法

Rezvan Motavallian, Masoud Komeily
{"title":"波斯语n-gram语言模型训练集的智能扩展:一种浓缩算法","authors":"Rezvan Motavallian, Masoud Komeily","doi":"10.7764/onomazein.61.09","DOIUrl":null,"url":null,"abstract":"In this article, we are going to introduce an automatic mechanism to intelligently extend the training set to improve the n-gram language model of Persian. Given the free word-order property in Persian, our enrichment algorithm diversifies n-gram combinations in baseline training data through dependency reordering, adding permissible sentences and filtering ungrammatical sentences using a hybrid empirical (heuristic) and linguistic approach. Experiments performed on baseline training set (taken from a standard Persian corpus) and the resulting enriched training set indicate a declining trend in average relative perplexity (between 34% to 73%) for informal/spoken vs. formal/written Persian test data.","PeriodicalId":500248,"journal":{"name":"Onomázein Revista de lingüística filología y traducción","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An intelligent extension of the training set for the Persian n-gram language model: an enrichment algorithm\",\"authors\":\"Rezvan Motavallian, Masoud Komeily\",\"doi\":\"10.7764/onomazein.61.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we are going to introduce an automatic mechanism to intelligently extend the training set to improve the n-gram language model of Persian. Given the free word-order property in Persian, our enrichment algorithm diversifies n-gram combinations in baseline training data through dependency reordering, adding permissible sentences and filtering ungrammatical sentences using a hybrid empirical (heuristic) and linguistic approach. Experiments performed on baseline training set (taken from a standard Persian corpus) and the resulting enriched training set indicate a declining trend in average relative perplexity (between 34% to 73%) for informal/spoken vs. formal/written Persian test data.\",\"PeriodicalId\":500248,\"journal\":{\"name\":\"Onomázein Revista de lingüística filología y traducción\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Onomázein Revista de lingüística filología y traducción\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7764/onomazein.61.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Onomázein Revista de lingüística filología y traducción","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7764/onomazein.61.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将引入一种自动机制来智能地扩展训练集,以改进波斯语的n-gram语言模型。考虑到波斯语的自由词序特性,我们的丰富算法通过依赖关系重新排序、添加允许的句子和使用混合经验(启发式)和语言方法过滤不符合语法的句子,使基线训练数据中的n-gram组合多样化。在基线训练集(取自标准波斯语语料库)和由此产生的丰富训练集上进行的实验表明,非正式/口语与正式/书面波斯语测试数据的平均相对困惑度呈下降趋势(在34%至73%之间)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intelligent extension of the training set for the Persian n-gram language model: an enrichment algorithm
In this article, we are going to introduce an automatic mechanism to intelligently extend the training set to improve the n-gram language model of Persian. Given the free word-order property in Persian, our enrichment algorithm diversifies n-gram combinations in baseline training data through dependency reordering, adding permissible sentences and filtering ungrammatical sentences using a hybrid empirical (heuristic) and linguistic approach. Experiments performed on baseline training set (taken from a standard Persian corpus) and the resulting enriched training set indicate a declining trend in average relative perplexity (between 34% to 73%) for informal/spoken vs. formal/written Persian test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信