{"title":"利用机器学习分析化学卡片分类任务","authors":"Logan Sizemore, Brian Hutchinson and Emily Borda","doi":"10.1039/D2RP00029F","DOIUrl":null,"url":null,"abstract":"<p >Education researchers are deeply interested in understanding the way students organize their knowledge. Card sort tasks, which require students to group concepts, are one mechanism to infer a student's organizational strategy. However, the limited resolution of card sort tasks means they necessarily miss some of the nuance in a student's strategy. In this work, we propose new machine learning strategies that leverage a potentially richer source of student thinking: free-form written language justifications associated with student sorts. Using data from a university chemistry card sort task, we use vectorized representations of language and unsupervised learning techniques to generate qualitatively interpretable clusters, which can provide unique insight in how students organize their knowledge. We compared these to machine learning analysis of the students’ sorts themselves. Machine learning-generated clusters revealed different organizational strategies than those built into the task; for example, sorts by difficulty or even discipline. There were also many more categories generated by machine learning for what we would identify as more novice-like sorts and justifications than originally built into the task, suggesting students’ organizational strategies converge when they become more expert-like. Finally, we learned that categories generated by machine learning for students’ justifications did not always match the categories for their sorts, and these cases highlight the need for future research on students’ organizational strategies, both manually and aided by machine learning. In sum, the use of machine learning to analyze results from a card sort task has helped us gain a more nuanced understanding of students’ expertise, and demonstrates a promising tool to add to existing analytic methods for card sorts.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 2","pages":" 417-437"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of machine learning to analyze chemistry card sort tasks\",\"authors\":\"Logan Sizemore, Brian Hutchinson and Emily Borda\",\"doi\":\"10.1039/D2RP00029F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Education researchers are deeply interested in understanding the way students organize their knowledge. Card sort tasks, which require students to group concepts, are one mechanism to infer a student's organizational strategy. However, the limited resolution of card sort tasks means they necessarily miss some of the nuance in a student's strategy. In this work, we propose new machine learning strategies that leverage a potentially richer source of student thinking: free-form written language justifications associated with student sorts. Using data from a university chemistry card sort task, we use vectorized representations of language and unsupervised learning techniques to generate qualitatively interpretable clusters, which can provide unique insight in how students organize their knowledge. We compared these to machine learning analysis of the students’ sorts themselves. Machine learning-generated clusters revealed different organizational strategies than those built into the task; for example, sorts by difficulty or even discipline. There were also many more categories generated by machine learning for what we would identify as more novice-like sorts and justifications than originally built into the task, suggesting students’ organizational strategies converge when they become more expert-like. Finally, we learned that categories generated by machine learning for students’ justifications did not always match the categories for their sorts, and these cases highlight the need for future research on students’ organizational strategies, both manually and aided by machine learning. In sum, the use of machine learning to analyze results from a card sort task has helped us gain a more nuanced understanding of students’ expertise, and demonstrates a promising tool to add to existing analytic methods for card sorts.</p>\",\"PeriodicalId\":69,\"journal\":{\"name\":\"Chemistry Education Research and Practice\",\"volume\":\" 2\",\"pages\":\" 417-437\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Education Research and Practice\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/rp/d2rp00029f\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Education Research and Practice","FirstCategoryId":"95","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/rp/d2rp00029f","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Use of machine learning to analyze chemistry card sort tasks
Education researchers are deeply interested in understanding the way students organize their knowledge. Card sort tasks, which require students to group concepts, are one mechanism to infer a student's organizational strategy. However, the limited resolution of card sort tasks means they necessarily miss some of the nuance in a student's strategy. In this work, we propose new machine learning strategies that leverage a potentially richer source of student thinking: free-form written language justifications associated with student sorts. Using data from a university chemistry card sort task, we use vectorized representations of language and unsupervised learning techniques to generate qualitatively interpretable clusters, which can provide unique insight in how students organize their knowledge. We compared these to machine learning analysis of the students’ sorts themselves. Machine learning-generated clusters revealed different organizational strategies than those built into the task; for example, sorts by difficulty or even discipline. There were also many more categories generated by machine learning for what we would identify as more novice-like sorts and justifications than originally built into the task, suggesting students’ organizational strategies converge when they become more expert-like. Finally, we learned that categories generated by machine learning for students’ justifications did not always match the categories for their sorts, and these cases highlight the need for future research on students’ organizational strategies, both manually and aided by machine learning. In sum, the use of machine learning to analyze results from a card sort task has helped us gain a more nuanced understanding of students’ expertise, and demonstrates a promising tool to add to existing analytic methods for card sorts.